One-dimensional turbulence (ODT) is an efficient stochastic methodology for turbulent flow simulation with dimensionality reduction. In this study, the conservative compressible ODT model is further developed and applied to address the challenge of accurately and economically modeling high-Reynolds-number wall-bounded compressible turbulent flows. The prohibitively costly direct numerical simulation (DNS) of multiscale motions for fully developed compressible turbulent channel flows is replaced by a much more economical simulation using the conservative compressible ODT model. The quantitative accuracy in capturing the main turbulent features, including the first-order mean statistics and the second-order and third-order turbulent fluctuation statistics, is verified by comparing the ODT results with different canonical DNS results at Mab = 0.5, 1.5, and 3.0. With its accuracy tested, the proposed ODT model is employed to capture the turbulent features of fully developed channel flows at Reynolds numbers widely ranging from 6000 to 60 000. The proposed ODT model reproduces Reynolds number effects in turbulent fluctuation statistics at all three Mach numbers mentioned above. Furthermore, considering the correspondence between the statistical effect of multiscale eddy events stochastically sampled in ODT and the effect of actual multiscale turbulent motions, a mechanism for Reynolds number effects is revealed by analyzing interactions between the multiscale eddy events from the ODT perspective. Evidence shows that the large-eddy motions in the outer region, rather than the small ones in the inner region, contribute to the Reynolds number effects when all these motions are plotted in inner-scaled units.

1.
P.
Bradshaw
, “
Compressible turbulent shear layers
,”
Annu. Rev. Fluid Mech.
9
,
33
52
(
1977
).
2.
P.
Schlatter
and
R.
Örlü
, “
Assessment of direct numerical simulation data of turbulent boundary layers
,”
J. Fluid Mech.
659
,
116
126
(
2010
).
3.
S.
Hoyas
and
J.
Jimenez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
4.
M.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200
,”
J. Fluid Mech.
774
,
395
415
(
2015
).
5.
H.
Foysi
,
S.
Sarkar
, and
R.
Friedrich
, “
Compressibility effects and turbulence scalings in supersonic channel flow
,”
J. Fluid Mech.
509
,
207
216
(
2004
).
6.
D.
Modesti
and
S.
Pirozzoli
, “
Reynolds and Mach number effects in compressible turbulent channel flow
,”
Int. J. Heat Fluid Flow
59
,
33
49
(
2016
).
7.
A. R.
Kerstein
, “
One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows
,”
J. Fluid Mech.
392
,
277
334
(
1999
).
8.
A. R.
Kerstein
,
W. T.
Ashurst
,
S.
Wunsch
, and
V.
Nilsen
, “
One-dimensional turbulence: Vector formulation and application to free shear flows
,”
J. Fluid Mech.
447
,
85
109
(
2001
).
9.
Rakhi
,
M.
Klein
,
J. A.
Medina Méndez
, and
H.
Schmidt
, “
One-dimensional turbulence modeling of incompressible temporally developing turbulent boundary layers with comparison to DNS
,”
J. Turbul.
20
(
8
),
506
543
(
2019
).
10.
Rakhi
and
H.
Schmidt
, “
One-dimensional turbulence: Application to incompressible spatially developing turbulent boundary layers
,”
Int. J. Heat Fluid Flow
85
,
108626
(
2020
).
11.
M.
Klein
,
H.
Schmidt
, and
D. O.
Lignell
, “
Stochastic modeling of surface scalar-flux fluctuations in turbulent channel flow using one-dimensional turbulence
,”
Int. J. Heat Fluid Flow
93
,
108889
(
2022
).
12.
T.
Echekki
,
A. R.
Kerstein
,
T. D.
Dreeben
, and
J.-Y.
Chen
, “‘
One-dimensional turbulence’ simulation of turbulent jet diffusion flames: Model formulation and illustrative applications
,”
Combust. Flame
125
,
1083
1105
(
2001
).
13.
B.
Ranganath
and
T.
Echekki
, “
One-dimensional turbulence-based closure with extinction and reignition
,”
Combust. Flame
154
,
23
46
(
2008
).
14.
T.
Echekki
and
K. G.
Gupta
, “
Hydrogen autoignition in a turbulent jet with preheated co-flow air
,”
Int. J. Hydrogen Energy
34
,
8352
8377
(
2009
).
15.
J.
An
,
Y.
Jiang
,
M.
Ye
, and
R.
Qiu
, “
One-dimensional turbulence simulations and chemical explosive mode analysis for flame suppression mechanism of hydrogen/air flames
,”
Int. J. Hydrogen Energy
38
,
7528
7538
(
2013
).
16.
A.
Movaghar
,
M.
Linne
,
M.
Oevermann
,
F.
Meiselbach
,
H.
Schmidt
, and
A. R.
Kerstein
, “
Numerical investigation of turbulent-jet primary breakup using one-dimensional turbulence
,”
Int. J. Multiphase Flow
89
,
241
254
(
2017
).
17.
M.
Fistler
,
A.
Kerstein
,
D. O.
Lignell
, and
M.
Oevermann
, “
Turbulence modulation in particle-laden stationary homogeneous isotropic turbulence using one-dimensional turbulence
,”
Phys. Rev. Fluids
5
,
044308
(
2020
).
18.
W. T.
Ashurst
and
A. R.
Kerstein
, “
One-dimensional turbulence: Variable density formulation and application to mixing layers
,”
Phys. Fluids
17
,
025107
(
2005
).
19.
N.
Punati
,
J. C.
Sutherland
,
A. R.
Kerstein
,
E. R.
Hawkes
, and
J. H.
Chen
, “
An evaluation of the one-dimensional turbulence model: Comparison with direct numerical simulations of CO/H2 jets with extinction and reignition
,”
Proc. Combust. Inst.
33
,
1515
1522
(
2011
).
20.
Z.
Jozefik
,
A. R.
Kerstein
, and
H.
Schmidt
, “
Simulation of shock–turbulence interaction in non-reactive flow and in turbulent deflagration and detonation regimes using one-dimensional turbulence
,”
Combust. Flame
164
,
53
67
(
2016
).
21.
J. D.
Anderson
and
J.
Wendt
,
Computational Fluid Dynamics
(
Springer
,
1995
).
22.
R. J.
McDermott
, “
Toward one-dimensional turbulence subgrid closure for large-eddy simulation
,” Ph.D. thesis (
The University of Utah
,
2005
).
23.
R. C.
Schmidt
,
A. R.
Kerstein
,
S.
Wunsch
, and
V.
Nilsen
, “
Near-wall LES closure based on one-dimensional turbulence modeling
,”
J. Comput. Phys.
186
,
317
355
(
2003
).
24.
S.-F.
Cao
and
T.
Echekki
, “
A low-dimensional stochastic closure model for combustion large-eddy simulation
,”
J. Turbul.
9
,
1
35
(
2008
).
25.
J.
Park
and
T.
Echekki
, “
LES–ODT study of turbulent premixed interacting flames
,”
Combust. Flame
159
,
609
620
(
2012
).
26.
L. S.
Freire
and
M.
Chamecki
, “
Large-eddy simulation of smooth and rough channel flows using a one-dimensional stochastic wall model
,”
Comput. Fluids
230
,
105135
(
2021
).
27.
T.
Gao
, “
A study of modeling and simulation methods for compressible turbulent flows based on one-dimensional turbulence
,” Ph.D. thesis (
Graduate School of National University of Defense Technology
,
2019
).
28.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
29.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
30.
G. N.
Coleman
,
J.
Kim
, and
R. D.
Moser
, “
A numerical study of turbulent supersonic isothermal isothermal-wall channel flow
,”
J. Fluid Mech.
305
,
159
183
(
1995
).
31.
P. G.
Huang
,
G. N.
Coleman
, and
P.
Bradshaw
, “
Compressible turbulent channel flows: DNS results and modelling
,”
J. Fluid Mech.
305
,
185
218
(
1995
).
32.
A.
Harten
, “
High resolution schemes for hyperbolic conservation laws
,”
J. Comput. Phys.
49
,
357
393
(
1983
).
33.
W. T.
Ashurst
and
A. R.
Kerstein
, “
Erratum: ‘One-dimensional turbulence: Variable density formulation and application to mixing layers
,’”
Phys. Fluids
21
,
119901
(
2009
).
34.
X.
Wu
, “
Direct numerical simulations of supersonic turbulent boundary layers subjected to surface curvature effects
,” Ph.D. thesis (
Graduate School of National University of Defense Technology
,
2019
).
35.
S.
Pirozzoli
and
M.
Bernardini
, “
Turbulence in supersonic boundary layers at moderate Reynolds number
,”
J. Fluid Mech.
688
,
120
168
(
2011
).
36.
V.
Giddey
,
D. W.
Meyer
, and
P.
Jenny
, “
Modeling three-dimensional scalar mixing with forced one-dimensional turbulence
,”
Phys. Fluids
30
,
125103
(
2018
).
37.
S.-G.
Cai
and
P.
Sagaut
, “
Explicit wall models for large eddy simulation
,”
Phys. Fluids
33
,
041703
(
2021
).
38.
K. P.
Griffin
,
L.
Fu
, and
P.
Moin
, “
Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer
,”
Proc. Natl. Acad. Sci.
118
,
e2111144118
(
2021
).
39.
A. J.
Smits
,
B. J.
Mckeon
, and
I.
Marusic
, “
High-Reynolds number wall turbulence
,”
Annu. Rev. Fluid Mech.
43
,
353
375
(
2011
).
40.
I.
Marusic
,
W. J.
Baars
, and
N.
Hutchins
, “
Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence
,”
Phys. Rev. Fluids
2
,
100502
(
2017
).
41.
N.
Hutchins
,
T. B.
Nickels
,
I.
Marusic
, and
M. S.
Chong
, “
Hot-wire spatial resolution issues in wall-bounded turbulence
,”
J. Fluid Mech.
635
,
103
136
(
2009
).
42.
I.
Marusic
,
R.
Mathis
, and
N.
Hutchins
, “
High Reynolds number effects in wall turbulence
,”
Int. J. Heat Fluid Flow
31
,
418
428
(
2010
).
43.
L.
Wang
,
R.
Hu
, and
X.
Zheng
, “
A scaling improved inner–outer decomposition of near-wall turbulent motions
,”
Phys. Fluids
33
,
045120
(
2021
).
44.
N.
Hutchins
and
I.
Marusic
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc. London, Ser. A
365
,
647
664
(
2007
).
45.
R.
Mathis
,
N.
Hutchins
, and
I.
Marusic
, “
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
628
,
311
337
(
2009
).
46.
J. P.
Monty
,
N.
Hutchins
,
H. C. H.
Ng
,
I.
Marusic
, and
M. S.
Chong
, “
A comparison of turbulent pipe, channel and boundary layer flows
,”
J. Fluid Mech.
632
,
431
442
(
2009
).
47.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
1
28
(
2007
).
48.
J. P.
Monty
,
J. A.
Stewart
,
R. C.
Williams
, and
M. S.
Chong
, “
Large-scale features in turbulent pipe and channel flows
,”
J. Fluid Mech.
589
,
147
156
(
2007
).
49.
L.
Wang
,
R.
Hu
, and
X.
Zheng
, “
A comparative study on the large-scale-resolving capability of wall-modeled large-eddy simulation
,”
Phys. Fluids
32
,
035102
(
2020
).
You do not currently have access to this content.