While the flamelet paradigm offers the opportunity to simplify computations of mean species concentrations in turbulent flames, a widely accepted criterion of the validity of this paradigm has not yet been elaborated. In this regard, different physical mechanisms are discussed, and flame folding is one of them. The present work aims at exploring the eventual influence of flame folding on the local flame structure in a turbulent flow. For this purpose, a new diagnostic technique was applied to processing complex-chemistry direct numerical simulation data obtained earlier from a lean hydrogen-air turbulent flame [Dave and Chaudhuri, J. Fluid Mech. 884, A46 (2020)]. The technique consists of counting crossing numbers Nf for a cold boundary of the local reaction zone and a ray normal to the mean flame brush, followed by analyzing statistics sampled from rays characterized by Nf3. More specifically, profiles of species mole fractions, temperature, heat release rate, and species production rates, conditioned to combustion progress variable and either Nf or axial distance Δx between two neighboring reaction zones, are sampled and compared with the counterpart profiles obtained from the laminar flame. Results show that these doubly conditioned profiles are close to each other for various crossing numbers or for various axial distances even if the distance is as small as half laminar flame thickness. The lack of a substantial effect of the crossing number or the axial distance on the doubly conditioned profiles implies that small-scale flame folding does not limit the validity of the flamelet paradigm.

1.
R.
Yu
and
A. N.
Lipatnikov
, “
DNS study of dependence of bulk consumption velocity in a constant-density reacting flow on turbulence and mixture characteristics
,”
Phys. Fluids
29
,
065116
(
2017
).
2.
L.
Cifuentes
,
C.
Dopazo
,
A.
Sandeep
,
N.
Chakraborty
, and
A.
Kempf
, “
Analysis of flame curvature evolution in a turbulent premixed bluff body burner
,”
Phys. Fluids
30
,
095101
(
2018
).
3.
A. Y.
Klimenko
, “
The convergence of combustion models and compliance with the Kolmogorov scaling of turbulence
,”
Phys. Fluids
33
,
025112
(
2021
).
4.
T.
Readshaw
,
T.
Ding
,
S.
Rigopoulos
, and
W. P.
Jones
, “
Modeling of turbulent flames with the large eddy simulation–probability density function (LES–PDF) approach, stochastic fields, and artificial neural networks
,”
Phys. Fluids
33
,
035154
(
2021
).
5.
V. A.
Sabelnikov
and
A. N.
Lipatnikov
, “
Scaling of reaction progress variable variance in highly turbulent reaction waves
,”
Phys. Fluids
33
,
085103
(
2021
).
6.
C.
Dopazo
,
L.
Cifuentes
, and
N.
Chakraborty
, “
Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers
,”
Phys. Fluids
29
,
045106
(
2017
).
7.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Combustion-induced local shear layers within premixed flamelets in weakly turbulent flows
,”
Phys. Fluids
30
,
085101
(
2018
).
8.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Does flame-generated vorticity increase turbulent burning velocity?
,”
Phys. Fluids
30
,
081702
(
2018
).
9.
P.
Brearley
,
U.
Ahmed
,
N.
Chakraborty
, and
A. N.
Lipatnikov
, “
Statistical behaviours of conditioned two-point second-order structure functions in turbulent premixed flames in different combustion regimes
,”
Phys. Fluids
31
,
115109
(
2019
).
10.
N.
Chakraborty
,
C.
Kasten
,
U.
Ahmed
, and
M.
Klein
, “
Evolutions of strain rate and dissipation rate of kinetic energy in turbulent premixed flames
,”
Phys. Fluids
33
,
125132
(
2021
).
11.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
12.
J. F.
Driscoll
,
J. H.
Chen
,
A. W.
Skiba
,
C. D.
Carter
,
E. R.
Hawkes
, and
H.
Wang
, “
Premixed flames subjected to extreme turbulence: Some questions and recent answers
,”
Prog. Energy Combust. Sci.
76
,
100802
(
2020
).
13.
A. W.
Skiba
,
C. D.
Carter
,
S. D.
Hammack
, and
J. F.
Driscoll
, “
Experimental assessment of the progress variable space structure of premixed flames subjected to extreme turbulence
,”
Proc. Combust. Inst.
38
,
2893
(
2021
).
14.
A. N.
Lipatnikov
and
V. A.
Sabelnikov
, “
An extended flamelet-based presumed probability density function for predicting mean concentrations of various species in premixed turbulent flames
,”
Int. J. Hydrogen Energy
45
,
31162
(
2020
).
15.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
F. E.
Hernández-Pérez
,
W.
Song
, and
H. G.
Im
, “
A priori DNS study of applicability of flamelet concept to predicting mean concentrations of species in turbulent premixed flames at various Karlovitz numbers
,”
Combust. Flame
222
,
370
(
2020
).
16.
A. N.
Lipatnikov
and
V. A.
Sabelnikov
, “
Evaluation of mean species mass fractions in premixed turbulent flames: A DNS study
,”
Proc. Combust. Inst.
38
,
6413
(
2021
).
17.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
F. E.
Hernández-Pérez
,
W.
Song
, and
H. G.
Im
, “
Prediction of mean radical concentrations in lean hydrogen-air turbulent flames at different Karlovitz numbers adopting a newly extended flamelet-based presumed PDF
,”
Combust. Flame
226
,
248
(
2021
).
18.
A. N.
Lipatnikov
,
T.
Nilsson
,
R.
Yu
,
X.-S.
Bai
, and
V. A.
Sabelnikov
, “
Assessment of a flamelet approach to evaluating mean species mass fractions in moderately and highly turbulent premixed flames
,”
Phys. Fluids
33
,
045121
(
2021
).
19.
H. C.
Lee
,
P.
Dai
,
M.
Wan
, and
A. N.
Lipatnikov
, “
Influence of molecular transport on burning rate and conditioned species concentrations in highly turbulent premixed flames
,”
J. Fluid Mech.
928
,
A5
(
2021
).
20.
H. C.
Lee
,
P.
Dai
,
M.
Wan
, and
A. N.
Lipatnikov
, “
Lewis number and preferential diffusion effects in lean hydrogen–air highly turbulent flames
,”
Phys. Fluids
34
,
035131
(
2022
).
21.
M.
Pfitzner
, “
A new analytic pdf for simulations of premixed turbulent combustion
,”
Flow. Turbul. Combust.
106
,
1213
(
2021
).
22.
M.
Hansinger
,
M.
Pfitzner
, and
M.
Klein
, “
Statistical analysis and verification of a new premixed combustion model with DNS data
,”
Combust. Sci. Technol.
192
,
2093
(
2020
).
23.
M.
Pfitzner
and
M.
Klein
, “
A near-exact analytic solution of progress variable and pdf for single-step Arrhenius chemistry
,”
Combust. Flame
226
,
380
(
2021
).
24.
M.
Pfitzner
and
P.
Breda
, “
An analytic probability density function for partially premixed flames with detailed chemistry
,”
Phys. Fluids
33
,
035117
(
2021
).
25.
M.
Pfitzner
,
J.
Shin
, and
M.
Klein
, “
A multidimensional combustion model for oblique, wrinkled premixed flames
,”
Combust. Flame
241
,
112121
(
2022
).
26.
T.
Echekki
,
J. H.
Chen
, and
I.
Gran
, “
The mechanism of mutual annihilation of stoichiometric premixed methane-air flames
,”
Proc. Combust. Inst.
26
,
855
(
1996
).
27.
J. H.
Chen
,
T.
Echekki
, and
W.
Kollmann
, “
The mechanism of two dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion
,”
Combust. Flame
116
,
15
(
1999
).
28.
A. Y.
Poludnenko
and
E. S.
Oran
, “
The interaction of high-speed turbulence with flames: Turbulent flame speed
,”
Combust. Flame
158
,
301
(
2011
).
29.
R. A. C.
Griffiths
,
J. H.
Chen
,
H.
Kolla
, and
R. S.
Cant
, “
Three-dimensional topology of turbulent premixed flame interaction
,”
Proc. Combust. Inst.
35
,
1341
(
2015
).
30.
Y.
Minamoto
,
K.
Jigjid
,
R.
Igari
, and
M.
Tanahashi
, “
Effect of flame-flame interaction on scalar PDF in turbulent premixed flames
,”
Combust. Flame
239
,
111660
(
2022
).
31.
H. L.
Dave
,
A.
Mohan
, and
S.
Chaudhuri
, “
Genesis and evolution of premixed flames in turbulence
,”
Combust. Flame
196
,
386
(
2018
).
32.
H. L.
Dave
and
S.
Chaudhuri
, “
Evolution of local flame displacement speeds in turbulence
,”
J. Fluid Mech.
884
,
A46
(
2020
).
33.
J.
Li
,
Z.
Zhao
,
A.
Kazakov
, and
F. L.
Dryer
, “
An updated comprehensive kinetic model of hydrogen combustion
,”
Int. J. Chem. Kinet.
36
,
566
(
2004
).
34.
N.
Babkovskaia
,
N. E. L.
Haugen
, and
A.
Brandenburg
, “
A high-order public domain code for direct numerical simulations of turbulent combustion
,”
J. Comput. Phys.
230
,
1
(
2011
).
35.
T. J.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
(
1992
).
36.
V. A.
Sabelnikov
,
R.
Yu
, and
A. N.
Lipatnikov
, “
Thin reaction zones in constant-density turbulent flows at low Damköhler numbers: Theory and simulations
,”
Phys. Fluids
31
,
055104
(
2019
).
37.
A. N.
Lipatnikov
and
J.
Chomiak
, “
Molecular transport effects on turbulent flame propagation and structure
,”
Prog. Energy Combust. Sci.
31
,
1
(
2005
).
38.
J. H.
Chen
and
H. G.
Im
, “
Stretch effects on the burning velocity of turbulent premixed hydrogen-air flames
,”
Proc. Combust. Inst.
28
,
211
(
2000
).
39.
H. G.
Im
and
J. H.
Chen
, “
Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames
,”
Combust. Flame
131
,
246
(
2002
).
40.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
S.
Nishiki
,
H. L.
Dave
,
F. E.
Hernández-Pérez
,
W.
Song
, and
H. G.
Im
, “
Dissipation and dilatation rates in premixed turbulent flames
,”
Phys. Fluids
33
,
035112
(
2021
).
You do not currently have access to this content.