A computational study is presented to characterize the flow behavior of independently controlled multiple synthetic jet actuators (SJA). For fixed geometric configuration and Reynolds number (Re) 300, the influence of Strouhal number (St=0.0280.172) and phase difference (=0°180°) between the actuators on the evolution, and interaction of the vortices are highlighted. Directivity plots are employed to illustrate the effect of on the vectoring behavior of a synthetic jet array (SJ array). It has been observed that a high jet vectoring angle (β) is achieved while operating the SJ array at low St. The vectoring angle seems to be independent of for the low and high St. However, for an intermediate St=0.086, the vectoring angle varies with the . The phase averaged vorticity contour for St=0.028 reveals that the evolution of the anti-clockwise vortex from the leading actuator (SJA1) decides the vectoring of the jet. By contrast, for higher Sts(0.115 and 0.13), the remnant vortices play a significant role in vectoring the jets toward the leading actuator. Based on the cross-stream distribution of time-averaged streamwise velocity, three distinct flow regimes are characterized: near-field, intermediate-field, and far-field. The strength of the jet is quantified by the downstream distribution of the jet momentum flux. Proper evolution of the vortices results in the enhancement of the jet momentum flux. It is recommended to operate the SJ array at an intermediate St (0.086) to vary the jet vectoring angle with phase differences as well as to achieve maximum jet momentum flux.

1.
B. L.
Smith
and
A.
Glezer
, “
The formation and evolution of synthetic jets
,”
Phys. Fluids
10
(
9
),
2281
2297
(
1998
).
2.
A.
Glezer
and
M.
Amitay
, “
Synthetic jets
,”
Annu. Rev. Fluid Mech.
34
(
1
),
503
529
(
2002
).
3.
M.
Kim
,
E. E.
Essel
, and
P. E.
Sullivan
, “
Effect of varying frequency of a synthetic jet on flow separation over an airfoil
,”
Phys. Fluids
34
(
1
),
015122
(
2022
).
4.
E.
Asgari
and
M.
Tadjfar
, “
Role of phase-difference between two adjacent rectangular synthetic jet actuators in active control of flow over a rounded ramp
,”
Phys. Fluids
34
(
2
),
025101
(
2022
).
5.
H.
Zong
and
M.
Kotsonis
, “
Interaction between plasma synthetic jet and subsonic turbulent boundary layer
,”
Phys. Fluids
29
(
4
),
045104
(
2017
).
6.
D.
McCormick
, “
Boundary layer separation control with directed synthetic jets
,” AIAA Paper No. AIAA 2000-0519,
2000
.
7.
M.
Bolitho
and
J.
Jacob
, “
Thrust vectoring flow control using plasma synthetic jet actuators
,” AIAA Paper No. AIAA 2008-1368,
2008
.
8.
B.
Ritchie
,
D.
Mujumdar
, and
J.
Seitzman
, “
Mixing in coaxial jets using synthetic jet actuators
,” AIAA Paper No. AIAA-2000-0404 (
2000
).
9.
F.
Bazdidi-Tehrani
,
M.
Karami
, and
M.
Jahromi
, “
Unsteady flow and heat transfer analysis of an impinging synthetic jet
,”
Heat Mass Transfer
47
(
11
),
1363
1373
(
2011
).
10.
M.
Schwickert
, “
SynJet thermal management technology increases led lighting system reliability
,” in
IEEE Reliability Society Annual Technical Report
(
2009
).
11.
S. J.
Campbell
,
W. Z.
Black
,
A.
Glezer
, and
J. G.
Hartley
, “
Thermal management of a laptop computer with synthetic air microjets
,” in
Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm'98)
(
IEEE
,
1998
), pp.
43
50
.
12.
X. M.
Tan
,
J. Z.
Zhang
,
S.
Yong
, and
G. N.
Xie
, “
An experimental investigation on comparison of synthetic and continuous jets impingement heat transfer
,”
Int. J. Heat Mass Transfer
90
,
227
238
(
2015
).
13.
T.
Van Buren
,
E.
Whalen
, and
M.
Amitay
, “
Vortex formation of a finite-span synthetic jet: Effect of rectangular orifice geometry
,”
J. Fluid Mech.
745
,
180
207
(
2014
).
14.
B. L.
Smith
and
A.
Glezer
, “
Vectoring of adjacent synthetic jets
,”
AIAA J.
43
(
10
),
2117
2124
(
2005
).
15.
D.
Guo
,
A. W.
Cary
, and
R. K.
Agarwal
, “
Numerical simulation of the interaction of two adjacent synthetic jet actuators
,” in
Computational Fluid Dynamics
(
Springer
,
Berlin, Heidelberg
,
2003
), pp.
751
756
.
16.
L.
Zhen-Bing
and
X.
Zhi-Xun
, “
PIV measurements and mechanisms of adjacent synthetic jets interactions
,”
Chin. Phys. Lett.
25
(
2
),
612
(
2008
).
17.
S.
Alimohammadi
,
E.
Fanning
,
T.
Persoons
, and
D. B.
Murray
, “
Characterization of flow vectoring phenomenon in adjacent synthetic jets using CFD and PIV
,”
Comput. Fluids
140
,
232
246
(
2016
).
18.
T.
Berk
,
G.
Gomit
, and
B.
Ganapathisubramani
, “
Vectoring of parallel synthetic jets: A parametric study
,”
J. Fluid Mech.
804
,
467
489
(
2016
).
19.
Y.
Liu
,
B.
Wang
, and
S.
Liu
, “
Investigation of phase excitation effect on mixing control in coaxial jets
,”
J. Therm. Sci.
18
(
4
),
364
369
(
2009
).
20.
H.
Riazi
and
N.
Ahmed
, “
Numerical investigation on two-orifice synthetic jet actuators of varying orifice spacing and diameter
,” AIAA Paper No. 2011-3171,
2011
.
21.
Z. B.
Luo
,
Z. X.
Xia
, and
B.
Liu
, “
An adjustable synthetic jet by a novel PZT-driven actuator with a slide block
,”
J. Phys.: Conf. Ser.
34
(
1
),
487
(
2006
).
22.
M.
Watson
,
A. J.
Jaworski
, and
N. J.
Wood
, “
Contribution to the understanding of flow interactions between multiple synthetic jets
,”
AIAA J.
41
(
4
),
747
749
(
2003
).
23.
G. K.
Jankee
and
B.
Ganapathisubramani
, “
Interaction and vectoring of parallel rectangular twin jets in a turbulent boundary layer
,”
Phys. Rev. Fluids
6
(
4
),
044701
(
2021
).
24.
J. P.
D'Alençon
,
D. A.
Gallardo
, and
L.
Silva-Llanca
, “
Fluid dynamics and heat transfer generated by a pair of adjacent impinging synthetic jets
,” in
17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
(
IEEE
,
2018
), pp.
537
546
.
25.
B. N.
Hewakandamby
, “
A numerical study of heat transfer performance of oscillatory impinging jets
,”
Int. J. Heat Mass Transfer
52
(
1–2
),
396
406
(
2009
).
26.
A.
McGuinn
,
D. I.
Rylatt
, and
T. S.
O'Donovan
, “
Heat transfer enhancement to an array of synthetic air jets by an induced crossflow
,”
Appl. Therm. Eng.
103
,
996
1003
(
2016
).
27.
M.
Chaudhari
,
B.
Puranik
, and
A.
Agrawal
, “
Multiple orifice synthetic jet for improvement in impingement heat transfer
,”
Int. J. Heat Mass Transfer
54
(
9–10
),
2056
2065
(
2011
).
28.
B. R.
Ravi
,
R.
Mittal
, and
F. M.
Najjar
, “
Study of three-dimensional synthetic jet flowfields using direct numerical simulation
,” AIAA Paper No. 2004-91,
2004
.
29.
D. P.
Rizzetta
,
M. R.
Visbal
, and
M. J.
Stanek
, “
Numerical investigation of synthetic-jet flowfields
,”
AIAA J.
37
(
8
),
919
927
(
1999
).
30.
Q.
Gallas
,
On the Modeling and Design of Zero-Net Mass Flux Actuators
(
University of Florida
,
2004
).
31.
M.
Jain
,
B.
Puranik
, and
A.
Agrawal
, “
A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow
,”
Sens. Actuators, A
165
(
2
),
351
366
(
2011
).
32.
J.
Pasa
and
V.
Arumuru
, “
Impingement heat transfer enhancement by synthetic jet array
,” in
Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference
December 17–20, 2021, IIT Madras, Chennai, Tamil Nadu, India (
Begel House Inc
,
2021
).
33.
R.
Holman
,
Y.
Utturkar
,
R.
Mittal
,
B. L.
Smith
, and
L.
Cattafesta
, “
Formation criterion for synthetic jets
,”
AIAA J.
43
(
10
),
2110
2116
(
2005
).
34.
L. F.
De Souza
,
M. T.
de Mendonça
,
M. A. F.
De Medeiros
, and
M.
Kloker
, “
Seeding of Görtler vortices through a suction and blowing strip
,”
J. Braz. Soc. Mech. Sci. Eng.
26
(
3
),
269
279
(
2004
).
You do not currently have access to this content.