This study aims at investigating the inlet flow conditions of flow through an axisymmetric sudden expansion with an expansion ratio of 2.0. A series of large eddy simulations with the WALE model were conducted for different inlet Reynolds numbers (Re) and turbulence intensities (urms/U¯m). The reattachment length, defined as the length measured downstream of the expansion where the flow direction is reversed adjacent to the wall (Lr), was measured for each case. For widely studied inlet turbulence intensity values (TI), the simulation results are in good agreement with the experimental and numerical results reported in the literature. Parametric studies revealed that turbulence intensity affects the critical Reynolds number, marking the transition between the laminar and transition regions and the reattachment length. The critical Reynolds number was found to decrease with increasing turbulence intensity. A correlation expression is proposed. Additional analysis with proper orthogonal decomposition was performed to enhance the understanding of complex flow structures downstream of the expansion. Finally, an overall correlation expression for the reattachment length was obtained for 500 Re 15 000 and 0.2  TI (%)  20. For a given turbulence intensity, the reattachment length can be expressed for laminar and turbulent regions as a function of the Reynolds number. The reattachment length in the transition region can be expressed as a fractional average of reattachment lengths for laminar and turbulent flows.

1.
T.
Balakhrisna
,
S.
Ghosh
,
G.
Das
, and
P.
Das
, “
Oil–water flows through sudden contraction and expansion in a horizontal pipe—Phase distribution and pressure drop
,”
Int. J. Multiphase Flow
36
,
13
24
(
2010
).
2.
K.
Schirrmann
,
G.
Cáceres-Aravena
, and
A.
Juel
, “
Self-assembly of coated microdroplets at the sudden expansion of a microchannel
,”
Microfluid. Nanofluid.
25
,
29
(
2021
).
3.
J. W.
Baughn
,
M. A.
Hoffman
,
R. K.
Takahashi
, and
D.
Lee
, “
Heat transfer downstream of an abrupt expansion in the transition Reynolds number regime
,”
J. Heat Transfer
109
,
37
42
(
1987
).
4.
H.
Gach
and
I.
Lowe
, “
Measuring flow reattachment lengths downstream of a stenosis using MRI
,”
J. Magn. Reson. Imaging
12
,
939
948
(
2000
).
5.
B.-H.
Choi
,
D.
Orea
,
R.
Chavez
,
N. K.
Anand
, and
P.
Sabharwall
, “
Numerical study of multi-component flow and mixing in a scaled fission product venting system
,”
Nucl. Eng. Des.
391
,
111714
(
2022
).
6.
M. C.
Chaturvedi
, “
Flow characteristics of axisymmetric expansions
,”
J. Hydraul. Div.
89
,
61
92
(
1963
).
7.
B. T.
Yang
and
M. H.
Yu
, “
The flow field in a suddenly enlarged combustion chamber
,”
AIAA J.
21
,
92
97
(
1983
).
8.
L.
Khezzar
,
J. H.
Whitelaw
, and
M.
Yianneskis
, “
Round sudden-expansion flows
,”
Proc. Inst. Mech. Eng., Part C
200
,
447
455
(
1986
).
9.
R. M. C.
So
, “
Inlet centerline turbulence effects on reattachment length in axisymmetric sudden-expansion flows
,”
Exp. Fluids
5
,
424
426
(
1987
).
10.
R. M. C.
So
and
S. A.
Ahmed
, “
Rotation effects on axisymmetric sudden-expansion flows
,”
J. Propul. Power
4
,
270
276
(
1988
).
11.
R. P.
Durrett
,
W. H.
Stevenson
, and
H. D.
Thompson
, “
Radial and axial turbulent flow measurements with an LDV in an axisymmetric sudden expansion air flow
,”
J. Fluids Eng.
110
,
367
372
(
1988
).
12.
E.
Lukács
and
J.
Vad
, “
Flow topology and loss analysis of a square-to-square sudden expansion relevant to HVAC systems: A case study
,”
J. Build. Eng.
41
,
102802
(
2021
).
13.
A.
Iribarne
,
F.
Frantisak
,
R. L.
Hummel
, and
J. W.
Smith
, “
An experimental study of instabilities and other flow properties of a laminar pipe jet
,”
AIChE J.
18
,
689
698
(
1972
).
14.
L. H.
Back
and
E. J.
Roschke
, “
Shear-layer flow regimes and wave instabilities and reattachment lengths downstream of an abrupt circular channel expansion
,”
J. Appl. Mech.
39
,
677
681
(
1972
).
15.
D. J.
Latornell
and
A.
Pollard
, “
Some observations on the evolution of shear layer instabilities in laminar flow through axisymmetric sudden expansions
,”
Phys. Fluids
29
,
2828
2835
(
1986
).
16.
B.
Pak
,
Y. I.
Cho
, and
S. U.
Choi
, “
Separation and reattachment of non-Newtonian fluid flows in a sudden expansion pipe
,”
J. Non-Newtonian Fluid Mech.
37
,
175
199
(
1990
).
17.
K. R.
Sreenivasan
and
P. J.
Strykowski
, “
An instability associated with a sudden expansion in a pipe flow
,”
Phys. Fluids
26
,
2766
2768
(
1983
).
18.
T.
Mullin
,
J. R. T.
Seddon
,
M. D.
Mantle
, and
A. J.
Sederman
, “
Bifurcation phenomena in the flow through a sudden expansion in a circular pipe
,”
Phys. Fluids
21
,
014110
(
2009
).
19.
N.
Furuichi
,
Y.
Takeda
, and
M.
Kumada
, “
Spatial structure of the flow through an axisymmetric sudden expansion
,”
Exp. Fluids
34
,
643
650
(
2003
).
20.
K.
Selvam
,
J.
Peixinho
, and
A. P.
Willis
, “
Localised turbulence in a circular pipe flow with gradual expansion
,”
J. Fluid Mech.
771
,
R2
(
2015
).
21.
E.
Sanmiguel-Rojas
,
C.
del Pino
, and
C.
Gutiérrez-Montes
, “
Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion
,”
Phys. Fluids
22
,
071702
(
2010
).
22.
D.
Fletcher
,
S.
Maskell
, and
M.
Patrick
, “
Heat and mass transfer computations for laminar flow in an axisymmetric sudden expansion
,”
Comput. Fluids
13
,
207
221
(
1985
).
23.
N.
Moallemi
and
J.
Brinkerhoff
, “
Instability and localized turbulence associated with flow through an axisymmetric sudden expansion
,”
Int. J. Heat Fluid Flow
72
,
161
173
(
2018
).
24.
E.
Sanmiguel-Rojas
and
T.
Mullin
, “
Finite-amplitude solutions in the flow through a sudden expansion in a circular
,”
J. Fluid Mech.
691
,
201
213
(
2012
).
25.
B.
Lebon
,
M. Q.
Nguyen
,
J.
Peixinho
,
M. S.
Shadloo
, and
A.
Hadjadj
, “
A new mechanism for periodic bursting of the recirculation region in the flow through a sudden expansion in a circular pipe
,”
Phys. Fluids
30
,
031701
(
2018
).
26.
M. Q.
Ngyuen
,
M. S.
Shadloo
,
A.
Hadjadj
,
B.
Lebon
, and
J.
Peixinho
, “
Perturbation threshold and hysteresis associated with the transition to turbulence in sudden expansion pipe flow
,”
Int. J. Heat Fluid Flow
76
,
187
196
(
2019
).
27.
D. V.
Shenoy
,
M. S.
Shadloo
,
J.
Peixinho
, and
A.
Hadjadj
, “
Direct numerical simulations of laminar and transitional flows in diverging pipes
,”
Int. J. Numer. Methods Heat Fluid Flow
30
,
75
92
(
2019
).
28.
R. D.
Luciano
,
X.
Chen
, and
D.
Bergstrom
, “
Discretization and perturbations in the simulation of localized turbulence in a pipe with a sudden expansion
,”
J. Fluid Mech.
935
,
A20
(
2022
).
29.
B.
Lebon
,
J.
Peixinho
,
S.
Ishizaka
, and
Y.
Tasaka
, “
Subcritical transition to turbulence in a sudden circular pipe expansion
,”
J. Fluid Mech.
849
,
340
354
(
2018
).
30.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
30
,
183
200
(
1999
).
31.
K.
Selvam
,
J.
Peixinho
, and
A. P.
Willis
, “
Flow in a circular expansion pipe flow: Effect of a vortex perturbation on localised turbulence
,”
Fluid Dyn. Res.
48
,
061418
(
2016
).
32.
C.
Howard
,
S.
Gupta
,
A.
Abbas
,
T. A.
Langrish
, and
D. F.
Fletcher
, “
Proper orthogonal decomposition (POD) analysis of CFD data for flow in an axisymmetric sudden expansion
,”
Chem. Eng. Res. Des.
123
,
333
346
(
2017
).
33.
P. J.
Roache
, “
Perspective: A method for uniform reporting of grid refinement studies
,”
J. Fluids Eng.
116
,
405
413
(
1994
).
34.
H.
Li
,
N. K.
Anand
,
Y. A.
Hassan
, and
T.
Nguyen
, “
Large eddy simulation of the turbulence flows of twin parallel jets
,”
Int. J. Heat Mass Transfer
129
,
1263
1273
(
2019
).
35.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
(
2017
).
36.
J.
Lumley
, “
Coherent structures in turbulence
,” in
Transition and Turbulence
(
Academic Press
,
1981
), pp.
215
242
.
37.
L.
Sirovich
and
M.
Kirby
, “
Low-dimensional procedure for the characterization of human faces
,”
J. Opt. Soc. Am. A
4
,
519
524
(
1987
).
38.
D.
Drikakis
, “
Bifurcation phenomena in incompressible sudden expansion flows
,”
Phys. Fluids
9
,
76
87
(
1997
).
39.
X.
Li
and
N.
Djilali
, “
On the scaling of separation bubbles
,”
JSME Int. J., Ser.
38
,
541
548
(
1995
).
40.
G.
Papadopoulos
, “
A functional relationship for modeling laminar to turbulent flow transitions
,”
J. Fluids Eng.
139
,
091202
(
2017
).
41.
M.
Avila
and
B.
Hof
, “
Nature of laminar-turbulence intermittency in shear flows
,”
Phys. Rev. E
87
,
063012
(
2013
).

Supplementary Material

You do not currently have access to this content.