A numerical analysis based on detached eddy simulations is conducted to investigate vortex dynamics of a pre-swirl pumpjet propulsor (PJP) in oblique inflow. In this paper, the working conditions of PJP operating in axisymmetric flow and drift with two angles (10° and 20°) are considered. The effects of incidence α and propeller loading on the wake dynamics of PJP as well as the mechanism leading to its destabilization are discussed. The results show that high hydrodynamic efficiency loss is found for PJP operating in drift. In addition, a different “secondary vortex structure” caused by the duct is found for PJP in both axisymmetric and oblique flow conditions. The instability mechanism of tip vortices shows obvious asymmetry. On the leeward side, it is dominated by the interaction caused by the duct-induced vortex, while it is dominated by the secondary vortices on the windward side. Furthermore, the fluctuation frequency of tip vortex for PJP is characterized by the rotor blade-passing frequency and the stator blade-passing frequency. In addition, the hub rotation frequency is important in oblique flow conditions.

1.
M.
Felli
and
M.
Falchi
, “
Propeller wake evolution mechanisms in oblique flow conditions
,”
J. Fluid Mech.
845
,
520
559
(
2018
).
2.
Y.-X.
Zhang
,
K.
Chen
, and
D.-P.
Jiang
, “
CFD analysis of the lateral loads of a propeller in oblique flow
,”
Ocean Eng.
202
,
107153
(
2020
).
3.
M.
Ge
,
U.
Svennberg
, and
R. E.
Bensow
, “
Investigation on RANS prediction of propeller induced pressure pulses and sheet-tip cavitation interactions in behind hull condition
,”
Ocean Eng.
209
,
107503
(
2020
).
4.
A. N.
Hayati
,
S. M.
Hashemi
, and
M.
Shams
, “
A study on the behind-hull performance of marine propellers astern autonomous underwater vehicles at diverse angles of attack
,”
Ocean Eng.
59
,
152
163
(
2013
).
5.
M.
Viviani
,
C.
Bonvino
,
S.
Mauro
,
M.
Cerruti
,
D.
Guadalupi
, and
A.
Menna
, “
Analysis of asymmetrical shaft power increase during tight maneuvers
,” in
9th International Conference on Fast Sea Transportation (FAST2007)
, Shanghai, China,
2007
.
6.
G.
Dubbioso
,
R.
Muscari
, and
A. D.
Mascio
, “
Analysis of a marine propeller operating in oblique flow. Part 2: Very high incidence angles
,”
Comput. Fluids
92
,
56
81
(
2014
).
7.
M.
Felli
,
F.
Di Felice
,
G.
Guj
, and
R.
Camussi
, “
Analysis of the propeller wake evolution by pressure and velocity phase measurements
,”
Exp. Fluids
41
,
441
451
(
2006
).
8.
M.
Felli
,
G.
Guj
, and
R.
Camussi
, “
Effect of the number of blades on propeller wake evolution
,”
Exp. Fluids
44
,
409
418
(
2008
).
9.
M.
Felli
,
R.
Camussi
, and
F.
Di Felice
, “
Mechanisms of evolution of the propeller wake in the transition and far fields
,”
J. Fluid Mech.
682
,
5
(
2011
).
10.
F.
Di Felice
,
M.
Felli
,
M.
Liefvendahl
, and
U.
Svennberg
, “
Numerical and experimental analysis of the wake behavior of a generic submarine propeller
,”
Prism
1
,
158
(
2009
), available at https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.2735&rep=rep1&type=pdf.
11.
P.
Han
,
G.
Pan
, and
W.
Tian
, “
Numerical simulation of flow-induced motion of three rigidly coupled cylinders in equilateral-triangle arrangement
,”
Phys. Fluids
30
,
125107
(
2018
).
12.
P.
Kumar
and
K.
Mahesh
, “
Large eddy simulation of propeller wake instabilities
,”
J. Fluid Mech.
814
,
361
(
2017
).
13.
A.
Posa
,
R.
Broglia
,
M.
Felli
,
M.
Falchi
, and
E.
Balaras
, “
Characterization of the wake of a submarine propeller via large-eddy simulation
,”
Comput. Fluids
184
,
138
152
(
2019
).
14.
R.
Muscari
,
A. D.
Mascio
, and
R.
Verzicco
, “
Modeling of vortex dynamics in the wake of a marine propeller
,”
Comput. Fluids
73
,
65
79
(
2013
).
15.
A. D.
Mascio
,
R.
Muscari
, and
G.
Dubbioso
, “
On the wake dynamics of a propeller operating in drift
,”
J. Fluid Mech.
754
,
263
307
(
2014
).
16.
J.
Hu
,
W.
Zhang
,
S.
Sun
, and
C.
Guo
, “
Numerical simulation of Vortex–Rudder interactions behind the propeller
,”
Ocean Eng.
190
,
106446
(
2019
).
17.
L.
Wang
,
T.
Wu
,
J.
Gong
, and
Y.
Yang
, “
Numerical analysis of the wake dynamics of a propeller
,”
Phys. Fluids
33
,
095120
(
2021
).
18.
L.
Wang
,
C.
Guo
,
C.
Wang
, and
P.
Xu
, “
Modified phase average algorithm for the wake of a propeller
,”
Phys. Fluids
33
,
035146
(
2021
).
19.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
Recovery in the wake of in-line axial-flow rotors
,”
Phys. Fluids
34
,
045104
(
2022
).
20.
M.
Felli
, “
Underlying mechanisms of propeller wake interaction with a wing
,”
J. Fluid Mech.
908
,
A10
(
2021
).
21.
L.
Wang
,
C.
Guo
,
P.
Xu
, and
Y.
Su
, “
Analysis of the wake dynamics of a propeller operating before a rudder
,”
Ocean Eng.
188
,
106250
(
2019
).
22.
J.
Gong
,
J.
Ding
, and
L.
Wang
, “
Propeller–duct interaction on the wake dynamics of a ducted propeller
,”
Phys. Fluids
33
,
074102
(
2021
).
23.
D.
Qin
,
G.
Pan
,
Q.
Huang
,
Z.
Zhang
, and
J.
Ke
, “
Numerical investigation of different tip clearances effect on the hydrodynamic performance of pumpjet propulsor
,”
Int. J. Comput. Methods
15
,
1850037
(
2018
).
24.
D.
Qin
,
G.
Pan
,
S.
Lee
,
Q.
Huang
, and
Y.
Shi
, “
Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor
,”
Ocean Eng.
188
,
106228
(
2019
).
25.
D.
Qin
,
Q.
Huang
,
G.
Pan
,
L.
Chao
,
Y.
Luo
, and
P.
Han
, “
Effect of the odd and even number of blades on the hydrodynamic performance of a pre-swirl pumpjet propulsor
,”
Phys. Fluids
34
,
035120
(
2022
).
26.
L.
Wang
,
C.
Guo
,
Y.
Su
,
P.
Xu
, and
T.
Wu
, “
Numerical analysis of a propeller during heave motion in cavitating flow
,”
Appl. Ocean Res.
66
,
131
145
(
2017
).
27.
L.
Wang
,
C.
Guo
,
P.
Xu
, and
Y.
Su
, “
Analysis of the performance of an oscillating propeller in cavitating flow
,”
Ocean Eng.
164
,
23
39
(
2018
).
28.
L.
Wang
,
J. E.
Martin
,
M.
Felli
, and
P. M.
Carrica
, “
Experiments and CFD for the propeller wake of a generic submarine operating near the surface
,”
Ocean Eng.
206
,
107304
(
2020
).
29.
H.
Li
,
Q.
Huang
,
G.
Pan
, and
X.
Dong
, “
The transient prediction of a pre-swirl stator pump-jet propulsor and a comparative study of hybrid RANS/LES simulations on the wake vortices
,”
Ocean Eng.
203
,
107224
(
2020
).
30.
D.
Qin
,
Q.
Huang
et al., “
Comparison of hydrodynamic performance and wake vortices of two typical types of pumpjet propulsor
,”
Ocean Eng.
224
,
108700
(
2021
).
31.
D.
Qin
,
Q.
Huang
,
G.
Pan
,
Y.
Shi
,
P.
Han
, and
X.
Dong
, “
Effect of the duct and the pre-swirl stator on the wake dynamics of a pre-swirl pumpjet propulsor
,”
Ocean Eng.
237
,
109620
(
2021
).
32.
M. L.
Shur
,
P. R.
Spalart
,
M. K.
Strelets
, and
A. K.
Travin
, “
A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities
,”
Int. J. Heat Fluid Flow
29
,
1638
1649
(
2008
).
33.
M. S.
Gritskevich
,
A. V.
Garbaruk
,
J.
Schütze
, and
F. R.
Menter
, “
Development of DDES and IDDES formulations for the k-
ω
shear stress transport model
,”
Flow Turbul. Combust.
88
,
431
449
(
2012
).
34.
D.
Qin
,
Q.
Huang
,
G.
Pan
,
P.
Han
,
Y.
Luo
, and
X.
Dong
, “
Numerical simulation of vortex instabilities in the wake of a preswirl pumpjet propulsor
,”
Phys. Fluids
33
,
055119
(
2021
).
You do not currently have access to this content.