Symmetries of flow structures are often prescribed by their mechanical instability and geometry. In this study, as an example, we present the homotopy of a rotating threefold spiral state that is robust in a spherical Couette flow toward a hybrid system with thermal stratification effects. The rotating wave state has not yet been confirmed to smoothly connect to the thermal stratification system. Through continuation, the most dangerous mode at a purely spherical Couette flow of m =4 modes of spherical harmonics is replaced by l =4 and m =3 in a purely thermal convective system. For the state obtained at the limit under only the thermal effect, the residual quantities of both the torque to the outer sphere and meridional circulation are discussed in detail.

1.
A. M.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc., B
237
,
37
72
(
1952
).
2.
C. M. R.
Fowler
,
The Solid Earth
(
Cambridge University Press
,
2004
).
3.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clerendon Press
,
Oxford
,
1961
).
4.
F.
Feudel
,
K.
Bergemann
,
L.
Tuckerman
,
C.
Egbers
,
B.
Futterer
,
M.
Gellert
, and
R.
Hollerbach
, “
Convection patterns in a spherical fluid shell
,”
Phys. Rev. E
83
,
046304
(
2011
).
5.
S.
Kida
,
K.
Araki
, and
H.
Kitauchi
, “
Periodic reversals of magnetic field generated by thermal convection in a rotating spherical shell
,”
J. Phys. Soc. Jpn.
66
(
7
),
2194
2201
(
1997
).
6.
A.
Sakuraba
and
M.
Kono
, “
Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo
,”
Phys. Earth Planet. Inter.
111
,
105
121
(
1999
).
7.
K.
Kimura
,
S.
Takehiro
, and
M.
Yamada
, “
Stability and bifurcation diagram of Boussinesq thermal convection in a moderately rotating spherical shell
,”
Phys. Fluids
23
,
074101
(
2011
).
8.
F.
Feudel
,
N.
Seehafer
,
L. S.
Tuckerman
, and
M.
Gellert
, “
Multistability in rotating spherical shell convection
,”
Phys. Rev. E
87
,
023021
(
2013
).
9.
F.
Feudel
,
L. S.
Tuckerman
,
M.
Gellert
, and
N.
Seehafer
, “
Bifurcations of rotating waves in rotating spehrical shell convection
,”
Phys. Rev. E
92
,
053015
(
2015
).
10.
X.
Song
and
P. G.
Richards
, “
Seismological evidence for differential rotation of the earth's inner core
,”
Nature
382
,
221
224
(
1996
).
11.
P.
Olson
and
J.
Aurnou
, “
A polar vortex in the earth's core
,”
Nature
402
,
170
173
(
1999
).
12.
P. L.
Read
, “
Super-rotation and diffusion of axial angular momentum: II. A review of quasi-axisymmetric models of planetary atmospheres
,”
Q. J. R. Meteorol. Soc.
112
,
253
272
(
1986
).
13.
T.
Imamura
,
J.
Mitchell
,
S.
Lebonnois
,
Y.
Kaspi
,
A. P.
Showman
, and
O.
Korablev
,
Space Science Reviews
216
,
87
(
2020
).
14.
T.
Horinouchi
,
Y.-Y.
Hayashi
,
S.
Watanabe
,
M.
Yamada
,
A.
Yamazaki
,
T.
Kouyama
,
M.
Taguchi
,
T.
Fukuhara
,
M.
Takagi
, and
T.
Satoh
, “
How waves and turbulence maintain the super-rotation of Venus' atmosphere
,”
Science
368
,
405
409
(
2020
).
15.
C.
Egbers
and
H. J.
Rath
, “
The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow
,”
Acta Mech.
111
,
125
140
(
1995
).
16.
P.
Wulf
,
C.
Egbers
, and
H. J.
Rath
, “
Routes to chaos in wide-gap spherical Couette flow
,”
Phys. Fluids
11
,
1359
1372
(
1999
).
17.
K.
Nakabayashi
,
Y.
Tsuchida
, and
Z.
Zheng
, “
Characteristics of disturbances in the larminar-turbulent transition of spherical Couette flow. 1. Spiral Taylor-Gortler vortices and traveling waves for narrow gaps
,”
Phys. Fluids
14
,
3963
3972
(
2002
).
18.
S.
Abbas
,
L.
Yuan
, and
A.
Shah
, “
Simulation of spiral instabilities in wide-gap spherical Couette flow
,”
Fluid Dyn. Res.
50
,
025507
(
2018
).
19.
B. R.
Munson
and
M.
Menguturk
, “
Viscous incompressible flow between concentric rotating spheres
,”
J. Fluid Mech.
69
,
705
719
(
1975
).
20.
Y. N.
Belyaev
,
A. A.
Monakhov
,
S. A.
Scherbakov
, and
I. M.
Yavorskaya
, “
Some routes to turbulence in spherical Couette flow
,” in
Laminar-Turbulent Transition IUTAM-Symposium
(Springer-Verlag, Berlin Heidelberg, New-York,
Tokyo
,
1984
), pp.
669
676
.
21.
R.
Hollerbach
,
M.
Junk
, and
C.
Egbers
, “
Non-axisymmetric instabilities in basic state spherical Couette flow
,”
Fluid Dyn. Res.
38
,
257
273
(
2006
).
22.
F.
Garcia
and
F.
Stefani
, “
Continuation and stability of rotating waves in the magnetized spherical Couette system: Secondary transitions and multistability
,”
Proc. R. Soc. A
474
,
20180281
(
2018
).
23.
F.
Garcia
,
M.
Seilmayer
,
A.
Giesecke
, and
F.
Stefani
, “
Four-frequency solution in a magnetohydrodynamic Couette flow as a consequence of azimuthal symmetry breaking
,”
Phys. Rev. Lett.
125
,
264501
(
2020
).
24.
D.
Dumas
and
A.
Leonard
, “
A divergence-free spectral expansions method for three dimensional flows in spherical-gap geometries
,”
J. Comput. Phys.
111
,
205
219
(
1994
).
25.
K.
Araki
,
J.
Mizushima
, and
S.
Yanase
, “
The nonaxisymmetric instability of the wide-gap spherical Couette flow
,”
Phys. Fluids
9
,
1197
1199
(
1997
).
26.
T.
Inagaki
,
T.
Itano
, and
M.
Sugihara-Seki
, “
Numerical study on the axisymmetric state in spherical Couette flow under unstable thermal stratification
,”
Acta Mech.
230
,
3499
3509
(
2019
).
27.
N.
Schaeffer
, “
Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations
,”
Geochem., Geophys., Geosyst.
14
(
3
),
751
758
, (
2013
).
28.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
(
2
),
216
231
(
2005
). Special issue on “Program Generation, Optimization, and Platform Adaptation.”
29.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
S.
Blackford
,
J.
Demmel
,
J.
Dongarra
,
J.
Du Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
LAPACK Users' Guide
, 3rd ed. (
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1999
).
30.
M.
Junk
and
C.
Egbers
, “
Isothermal spherical Couette flow
,” in
Physics of Rotating Fluids, Lecture Notes in Physics
, edited by
Christoph
Egbers
and
Gerd
Pfister
(
Springer
,
2000
), Vol. 549, pp.
215
233
.
31.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics: Course of Theoretical Physics
, 2nd ed. (
Butterworth-Heinemann
,
1987
), Vol. 6.
32.
F.
Goto
,
T.
Itano
,
M.
Sugihara-Seki
, and
T.
Adachi
, “
Bifurcation aspect of polygonal coherence over transitional Reynolds numbers in wide-gap spherical Couette flow
,”
Phys. Rev. Fluids
6
,
113903
(
2021
).
33.
T.
Itano
,
T.
Ninomiya
,
K.
Konno
, and
M.
Sugihara-Seki
, “
Spiral roll state in heat convection between nonrotating concentric double spherical boundaries
,”
J. Phys. Soc. Jpn.
84
,
103401
(
2015
).
34.
F. H.
Busse
, “
Patterns of convection in spherical shells
,”
J. Fluid Mech.
72
(
1
),
67
85
(
1975
).
35.
A.
Zebib
,
G.
Schubert
,
J. L.
Dein
, and
R. C.
Pariwal
, “
Character and stability of axisymmetric thermal convection in spheres and spherical shells
,”
Geophys. Astrophys. Fluid Dyn.
23
,
1
42
(
1983
).
36.
R.
Sigrist
and
P.
Matthews
, “
Symmetric spiral patterns on spheres
,”
SIAM J. Appl. Dyn. Syst.
10
(
3
),
1177
1211
(
2011
).
37.
M.
Nagata
and
F.
Busse
, “
Three-dimensional tertiary motions in a plane shear layer
,”
J. Fluids Mech.
135
,
1
26
(
1983
).
38.
M.
Nagata
and
T.
Itano
,
Numerical Modelling of the Transition from Laminar to Turbulent Stages in a Simple Parallel Shear Flow
(
T.U. Budapest
,
Budapest, Hungary
,
2003
).
39.
D.
Bensimon
,
P.
Kolodner
,
C. M.
Surko
,
H.
Williams
, and
V.
Croquette
, “
Competing and coexisting dynamical states of travelling-wave convection in an annulus
,”
J. Fluid Mech.
217
,
441
467
(
1990
).
You do not currently have access to this content.