Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicability to discrete phases in both stationary and non-stationary flows. The method is demonstrated on a test case of decaying homogeneous isotropic turbulence, where particle data are generated by one-way coupled simulations. Here, particle positions and velocities are integrated forward in time in a Lagrangian manner. The results demonstrate a proof of concept of the PPOD, and its potential for applicability. It is demonstrated that PPOD modes are able to capture both large scale temporal flow features as well as smaller scale variations. Additionally, particle trajectories/velocities are approximated using a subset of the PPOD basis where convergence is demonstrated. In the application of PPOD on multiple particle realizations, an increase in the convergence rate is observed as the initial particle separation is decreased. When decomposing both solid (rigid) and fluid particle velocities, the method provides the possibility of modal analysis of fluid–particle interactions in multiphase flows. For various configurations of rigid particle densities, the modal parallelity between the two phases is mapped, revealing a higher parallelity when the rigid particles are neutrally buoyant.

1.
Allery
,
C.
,
Beghein
,
C.
, and
Hamdouni
,
A.
, “
Applying proper orthogonal decomposition to the computation of particle dispersion in a two-dimensional ventilated cavity
,”
Commun. Nonlinear Sci. Numer. Simul.
10
,
907
920
(
2005
).
2.
Allery
,
C.
,
Beghein
,
C.
, and
Hamdouni
,
A.
, “
On investigation of particle dispersion by a pod approach
,”
Int. Appl. Mech.
44
,
110
119
(
2008
).
3.
Balachandar
,
S.
and
Eaton
,
J.
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
133
(
2010
).
4.
Bassenne
,
M.
,
Moin
,
P.
, and
Urzay
,
J.
, “
Wavelet multiresolution analysis of particle-laden turbulence
,”
Phys. Rev. Fluids
3
,
084304
(
2018
).
5.
Basset
,
A.
,
A Treatise on Hydrodynamics with Numerous Examples
(
Deighton
,
Bell and Company
,
1888
), Vol.
2
.
6.
Borée
,
J.
, “
Extended proper orthogonal decomposition: A tool to analyse correlated events in turbulent flows
,”
Exp. Fluids
35
,
188
192
(
2003
).
7.
Boussinesq
,
J.
, “
Sur la résistance qu'oppose un fluide indéfini au repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables
,”
C. R. Acad. Sci.
100
,
935
937
(
1885
).
8.
Burton
,
T.
and
Eaton
,
J.
, “
Fully resolved simulations of particle-turbulence interaction
,”
J. Fluid Mech.
545
,
67
111
(
2005
).
9.
Campagne
,
A.
,
Hassaini
,
R.
,
Redor
,
I.
,
Sommeria
,
J.
,
Valran
,
T.
,
Viboud
,
S.
, and
Mordant
,
N.
, “
Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves
,”
Phys. Rev. Fluids
3
,
044801
(
2018
).
10.
Denner
,
F.
,
Evrard
,
F.
, and
van Wachem
,
B.
, “
Conservative finite-volume framework and pressure-based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds
,”
J. Comput. Phys.
409
,
109348
(
2020
).
11.
Elghobashi
,
S.
, “
On predicting particle-laden turbulent flows
,”
Appl. Sci. Res.
52
,
309
329
(
1994
).
12.
Elghobashi
,
S.
and
Truesdell
,
G.
, “
Direct simulation of particle dispersion in a decaying isotropic turbulence
,”
J. Fluid Mech.
242
,
655
700
(
1992
).
13.
Fahl
,
M.
, “
Computation of POD basis functions for fluid flows with lanczos methods
,”
Math. Comput. Modell.
34
,
91
107
(
2001
).
14.
Ferrante
,
A.
and
Elghobashi
,
S.
, “
On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence
,”
Phys. Fluids
15
,
315
329
(
2003
).
15.
Freund
,
A.
and
Ferrante
,
A.
, “
Wavelet-spectral analysis of droplet-laden isotropic turbulence
,”
J. Fluid Mech.
875
,
914
928
(
2019
).
16.
Higham
,
J.
,
Shahnam
,
M.
, and
Vaidheeswaran
,
A.
, “
Using a proper orthogonal decomposition to elucidate features in granular flows
,”
Granular Matter
22
,
86
(
2020
).
17.
Hinze
,
J. O.
,
Turbulence
, 2nd ed. (
McGraw-Hill
,
New York
,
1975
).
18.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
, 2nd ed. (
Cambridge University Press
,
2012
), pp.
68
88
.
19.
Homann
,
H.
and
Bec
,
J.
, “
Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow
,”
J. Fluid Mech.
651
,
81
91
(
2010
).
20.
Li
,
S.
,
Duan
,
G.
, and
Sakai
,
M.
, “
POD-based identification approach for powder mixing mechanism in Eulerian-Langrangian simulations
,”
Adv. Powder Technol.
33
(
1
),
103364
(
2022
).
21.
Lumley
,
J. L.
, “
The structure of inhomogeneous turbulent flows
,” in
Atmospheric Turbulence and Radio Wave Propagation-Proceedings of the International Colloquium
(
Nauka
,
Moscow
,
1967
), pp.
166
176
.
22.
Mallouppas
,
G.
, “
Modelling of turbulent gas-solid flows from DNS to LES
,” Ph.D. thesis (
Imperial College London
,
2013
).
23.
Mallouppas
,
G.
,
George
,
W.
, and
van Wachem
,
B.
, “
New forcing scheme to sustain particle-laden homogeneous and isotropic turbulence
,”
Phys. Fluids
25
,
083304
(
2013
).
24.
Mallouppas
,
G.
,
George
,
W.
, and
van Wachem
,
B.
, “
Dissipation and inter-scale transfer in fully coupled particle and fluid motions in homogeneous isotropic forced turbulence
,”
Int. J. Heat Fluid Flow
67
,
74
85
(
2017
).
25.
Olbrich
,
M.
,
Bär
,
M.
,
Oberleithner
,
K.
, and
Schmelter
,
S.
, “
Statistical characterization of horizontal slug flow using snapshot proper orthogonal decomposition
,”
Int. J. Multiphase Flow
134
,
103453
(
2021
).
26.
Oseen
,
C.
, “
Über die stokes'sche formel, und über eine verwandte aufgabe in der hydrodynamik
,”
Ark. Mat., Astron. Fys.
6–29
,
1
(
1910
).
27.
Pang
,
M.
and
Wei
,
J.
, “
Experimental investigation on the turbulence channel flow laden with small bubbles by PIV
,”
Chem. Eng. Sci.
94
,
302
315
(
2013
).
28.
Schiller
,
L.
and
Naumann
,
A.
, “
Über die grundlegenden berechnungen bei der schwerkraftaufbereitung
,”
Z. Ver. Dtsch. Ing.
77
,
318
320
(
1933
).
29.
Schneiders
,
L.
,
Meinke
,
M.
, and
Schröder
,
W.
, “
Direct particle–fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence
,”
J. Fluid Mech.
819
,
188
227
(
2017
).
30.
Shen
,
J.
,
Lu
,
Z.
,
Wang
,
L.
, and
Peng
,
C
. “
Influence of particle-fluid density ratio on the dynamics of finite-size particles in homogeneous isotropic turbulent flows
,”
Phys. Rev. E
104
(
2
),
025109
(
2021
).
31.
Sirovich
,
L.
, “
Turbulence and the dynamics of coherent structures
,”
Q. Appl. Math.
45
,
561
582
(
1987
).
32.
Squires
,
K.
and
Eaton
,
J.
, “
Particle response and turbulence modification in isotropic turbulence
,”
Phys. Fluids A
2
,
1191
1203
(
1990
).
33.
Tchen
,
C. M.
, “
Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid
,” Ph.D. thesis (
Delft University
,
1947
).
34.
Towne
,
A.
,
Schmidt
,
O.
, and
Colonius
,
T.
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
(
2018
).
35.
Viggiano
,
B.
,
Skjæraasen
,
O.
,
Schümann
,
H.
,
Tutkun
,
M.
, and
Cal
,
R.
, “
Characterization of flow dynamics and reduced-order description of experimental two-phase pipe flow
,”
Int. J. Multiphase Flow
105
,
91
101
(
2018
).
36.
Yeung
,
P.
and
Pope
,
S.
, “
An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence
,”
J. Comput. Phys.
79
,
373
416
(
1988
).
You do not currently have access to this content.