The thermal protection system is essential for the safe and reliable flying of any high-speed aircraft. A carbon fiber-reinforced phenolic resin (PR) composite is one of the most important matrix candidates for ablative materials, and the microscopic understanding of the pyrolysis process of PR, however, still remains poor. The usual numerical approach is based on volumetric pyrolysis while neglecting the influence of external hyperthermal surroundings. A surface-volume coupled reactive molecular dynamics model is established in this work to simulate complicated heat/mechanics/chemistry multi-physical field coupled pyrolysis problems. The pyrolysis process of the carbon fiber-PR composite is investigated in the presence of vacuum and hyperthermal gas impacts and compared with the volumetric pyrolysis simulation only. The consideration of the surface–volume coupling reveals many unique features beyond the volumetric pyrolysis, which include the generation of different pyrolysis products and the dependence of the effective mass diffusivity of pyrolysis gases on impinging gases in the presence of the hyperthermal non-equilibrium environment. With the detailed revelation of the evolutions of PR solid phase and pyrolysis gaseous products, the work is of great help in improving the microscopic pyrolysis mechanisms, especially the “blowing gas effect,” a key phenomenon for improved understanding of the complicated hypersonic boundary layer flow.

1.
J.
Chen
,
J.
Pei
, and
H.
Zhao
, “
Effect of oxygen plasma treatment on the structure and mechanical properties of bilayer graphene studied by molecular dynamics simulation
,”
J. Phys. Chem. C
125
,
19345
(
2021
).
2.
B.
Jayee
,
R.
Nieman
,
T. K.
Minton
,
W. L.
Hase
, and
H.
Guo
, “
Direct dynamics simulations of hyperthermal O (3p) collisions with pristine, defected, oxygenated, and nitridated graphene surfaces
,”
J. Phys. Chem. C
125
,
9795
(
2021
).
3.
S. J.
Poovathingal
,
M.
Qian
,
V. J.
Murray
, and
T. K.
Minton
, “
Reactive and inelastic scattering dynamics of hyperthermal O and O2 from a carbon fiber network
,”
Carbon
183
,
277
(
2021
).
4.
Y.
Takahashi
,
T.
Ohashi
,
N.
Oshima
,
Y.
Nagata
, and
K.
Yamada
, “
Aerodynamic instability of an inflatable aeroshell in suborbital re-entry
,”
Phys. Fluids
32
,
075114
(
2020
).
5.
S.
Zhang
,
X.
Li
,
J.
Zuo
,
J.
Qin
,
K.
Cheng
,
Y.
Feng
, and
W.
Bao
, “
Research progress on active thermal protection for hypersonic vehicles
,”
Prog. Aerosp. Sci.
119
,
100646
(
2020
).
6.
J.
Huang
,
Y.
Weixing
, and
S.
Xianyang
, “
Coupled fluid-thermal investigation on non-ablative thermal protection system with spiked body and opposing jet combined configuration
,”
Chin. J. Aeronaut.
32
,
1390
(
2019
).
7.
A. N.
Molchanova
,
A. V.
Kashkovsky
, and
Y. A.
Bondar
, “
Surface recombination in the direct simulation Monte Carlo method
,”
Phys. Fluids
30
,
107105
(
2018
).
8.
W.
Zhu
,
M.
Shi
,
Y.
Zhu
, and
C.
Lee
, “
Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone
,”
Phys. Fluids
32
,
104110
(
2020
).
9.
S.
Tang
and
C.
Hu
, “
Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review
,”
J. Mater. Sci. Technol.
33
,
117
(
2017
).
10.
O.
Uyanna
and
H.
Najafi
, “
Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects
,”
Acta Astronaut.
176
,
341
(
2020
).
11.
M.
Natali
,
J. M.
Kenny
, and
L.
Torre
, “
Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review
,”
Prog. Mater. Sci.
84
,
192
(
2016
).
12.
L.
Luo
,
Y.
Wang
,
L.
Liu
,
L.
Duan
,
G.
Wang
, and
Y.
Lu
, “
Ablation behavior of C/SiC composites in plasma wind tunnel
,”
Carbon
103
,
73
(
2016
).
13.
M.
Natali
,
I.
Puri
,
J. M.
Kenny
,
L.
Torre
, and
M.
Rallini
, “
Microstructure and ablation behavior of an affordable and reliable nanostructured Phenolic Impregnated Carbon Ablator (PICA)
,”
Polym. Degrad. Stab.
141
,
84
(
2017
).
14.
M.
Asim
,
N.
Saba
,
M.
Jawaid
,
M.
Nasir
,
M.
Pervaiz
, and
O. Y.
Alothman
, “
A review on phenolic resin and its composites
,”
Curr. Anal. Chem.
14
,
185
(
2018
).
15.
A.
Bellemans
,
J. B.
Scoggins
,
R.
Jaffe
, and
T. E.
Magin
, “
Transport properties of carbon-phenolic gas mixtures
,”
Phys. Fluids
31
,
096102
(
2019
).
16.
L.
Duan
,
X.
Zhao
, and
Y.
Wang
, “
Oxidation and ablation behaviors of carbon fiber/phenolic resin composites modified with borosilicate glass and polycarbosilane interface
,”
J. Alloys Compd.
827
,
154277
(
2020
).
17.
Z.
Liu
,
A.
Hao
,
S.
Zhang
,
Y.-S.
Dessureault
, and
R.
Liang
, “
Lightweight carbon nanotube surface thermal shielding for carbon fiber/bismaleimide composites
,”
Carbon
153
,
320
(
2019
).
18.
G. R.
Rao
,
I.
Srikanth
, and
K. L.
Reddy
, “
Effect of organo-modified montmorillonite nanoclay on mechanical, thermal and ablation behavior of carbon fiber/phenolic resin composites
,”
Def. Technol.
17
,
812
(
2021
).
19.
Y.
Chen
,
H.-B.
Zhang
,
M.
Wang
,
X.
Qian
,
A.
Dasari
, and
Z.-Z.
Yu
, “
Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances
,”
Compos. Sci. Technol.
152
,
254
(
2017
).
20.
E.
Pakdel
,
S.
Kashi
,
R.
Varley
, and
X.
Wang
, “
Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes
,”
Resour. Conserv. Recycl.
166
,
105340
(
2021
).
21.
W.
Yang
,
B.
Xu
,
M.
Qi
,
D.
Chen
,
J.
Ding
,
Z.
Huang
, and
Y.
Wang
, “
Improving ablation properties of ceramifiable vitreous silica fabric reinforced boron phenolic resin composites via an incorporation of MoSi2
,”
Plast., Rubber Compos.
49
,
456
(
2020
).
22.
B. K.
Bessire
and
T. K.
Minton
, “
Decomposition of phenolic impregnated carbon ablator (PICA) as a function of temperature and heating rate
,”
ACS Appl. Mater. Interfaces
9
,
21422
(
2017
).
23.
H.
Jiang
,
J.
Wang
,
S.
Wu
,
Z.
Yuan
,
Z.
Hu
,
R.
Wu
, and
Q.
Liu
, “
The pyrolysis mechanism of phenol formaldehyde resin
,”
Polym. Degrad. Stab.
97
,
1527
(
2012
).
24.
H.-W.
Wong
,
J.
Peck
,
J.
Assif
,
F.
Panerai
,
J.
Lachaud
, and
N. N.
Mansour
, “
Detailed analysis of species production from the pyrolysis of the phenolic impregnated carbon ablator
,”
J. Anal. Appl. Pyrolysis
122
,
258
(
2016
).
25.
Y.
Zhong
,
X.
Jing
,
S.
Wang
, and
Q.-X.
Jia
, “
Behavior investigation of phenolic hydroxyl groups during the pyrolysis of cured phenolic resin via molecular dynamics simulation
,”
Polym. Degrad. Stab.
125
,
97
(
2016
).
26.
T.
Zhao
,
T.
Li
,
Z.
Xin
,
L.
Zou
, and
L.
Zhang
, “
A ReaxFF-based molecular dynamics simulation of the pyrolysis mechanism for polycarbonate
,”
Energy Fuels
32
,
2156
(
2018
).
27.
X.
Lu
,
X.
Wang
,
Q.
Li
,
X.
Huang
,
S.
Han
, and
G.
Wang
, “
A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of polyimide
,”
Polym. Degrad. Stab.
114
,
72
(
2015
).
28.
L.
Xi
, “
Turbulent drag reduction by polymer additives: Fundamentals and recent advances
,”
Phys. Fluids
31
,
121302
(
2019
).
29.
B.
Ramezanzadeh
,
P.
Kardar
,
G.
Bahlakeh
,
Y.
Hayatgheib
, and
M.
Mahdavian
, “
Fabrication of a highly tunable graphene oxide composite through layer-by-layer assembly of highly crystalline polyaniline nanofibers and green corrosion inhibitors: Complementary experimental and first-principles quantum-mechanics modeling approaches
,”
J. Phys. Chem. C
121
,
20433
(
2017
).
30.
S.
Naserifar
,
J. J.
Oppenheim
,
H.
Yang
,
T.
Zhou
,
S.
Zybin
,
M.
Rizk
, and
W. A.
Goddard
 III
, “
Accurate non-bonded potentials based on periodic quantum mechanics calculations for use in molecular simulations of materials and systems
,”
J. Chem. Phys.
151
,
154111
(
2019
).
31.
C.
Ashraf
and
A. C.
Van Duin
, “
Extension of the ReaxFF combustion force field toward syngas combustion and initial oxidation kinetics
,”
J. Phys. Chem. A
121
,
1051
(
2017
).
32.
X.
Li
,
M.
Zheng
,
C.
Ren
, and
L.
Guo
, “
ReaxFF molecular dynamics simulations of thermal reactivity of various fuels in pyrolysis and combustion
,”
Energy Fuels
35
,
11707
(
2021
).
33.
S. G.
Srinivasan
,
A. C.
Van Duin
, and
P.
Ganesh
, “
Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene
,”
J. Phys. Chem. A
119
,
571
(
2015
).
34.
A.
Vashisth
,
S.
Khatri
,
S. H.
Hahn
,
W.
Zhang
,
A. C.
Van Duin
, and
M.
Naraghi
, “
Mechanical size effects of amorphous polymer-derived ceramics at the nanoscale: Experiments and ReaxFF simulations
,”
Nanoscale
11
,
7447
(
2019
).
35.
D.
Hong
,
P.
Li
,
T.
Si
, and
X.
Guo
, “
ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene
,”
Energy
218
,
119553
(
2021
).
36.
Q.
Liu
,
S.
Liu
,
Y.
Lv
,
P.
Hu
,
Y.
Huang
,
M.
Kong
, and
G.
Li
, “
Atomic-scale insight into the pyrolysis of polycarbonate by ReaxFF-based reactive molecular dynamics simulation
,”
Fuel
287
,
119484
(
2021
).
37.
T.
Chen
,
A.
Yuen
,
B.
Lin
,
L.
Liu
,
A.
Lo
,
Q.
Chan
,
J.
Zhang
,
S.
Cheung
, and
G.
Yeoh
, “
Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics (ReaxFF)
,”
J. Anal. Appl. Pyrolysis
153
,
104931
(
2021
).
38.
A.
Appar
,
R.
Kumar
, and
S. K.
Naspoori
, “
Conjugate flow-thermal analysis of a hypersonic reentry vehicle in the rarefied flow regime
,”
Phys. Fluids
34
,
026107
(
2022
).
39.
D.-E.
Jiang
,
A. C.
Van Duin
,
W. A.
Goddard
 III
, and
S.
Dai
, “
Simulating the initial stage of phenolic resin carbonization via the ReaxFF reactive force field
,”
J. Phys. Chem. A
113
,
6891
(
2009
).
40.
T. G.
Desai
,
J. W.
Lawson
, and
P.
Keblinski
, “
Modeling initial stage of phenolic pyrolysis: Graphitic precursor formation and interfacial effects
,”
Polymer
52
,
577
(
2011
).
41.
W.
Li
,
J.
Huang
,
Z.
Zhang
,
H.
Huang
, and
J.
Liang
, “
Competition mechanism during oxidation of pyrolysis gases in nonequilibrium boundary layer on thermal protection performance of charring composites
,”
Polym. Compos.
41
,
2732
(
2020
).
42.
X.
Xing
,
X.
Niu
,
Y.
Liu
,
C.
Yang
,
S.
Wang
,
Y.
Li
, and
X.
Jing
, “
In-depth understanding on the early stage of phenolic resin thermal pyrolysis through ReaxFF-molecular dynamics simulation
,”
Polym. Degrad. Stab.
186
,
109534
(
2021
).
43.
Z.
Cui
,
J.
Zhao
,
G.
Yao
,
J.
Zhang
,
Z.
Li
,
Z.
Tang
, and
D.
Wen
, “
Competing effects of surface catalysis and ablation in hypersonic reentry aerothermodynamic environment
,”
Chin. J. Aeronaut.
(
2021
) (in press).
44.
Z.
Cui
,
J.
Zhao
,
G.
Yao
,
Z.-H.
Li
, and
D.
Wen
, “
Molecular insight of the interface evolution of silicon carbide under hyperthermal atomic oxygen impact
,”
Phys. Fluids
34
,
052101
(
2022
).
45.
Z.
Cui
,
G.
Yao
,
J.
Zhao
,
J.
Zhang
, and
D.
Wen
, “
Atomistic-scale investigations of hyperthermal oxygen–graphene interactions via reactive molecular dynamics simulation: The gas effect
,”
Phys. Fluids
33
,
052107
(
2021
).
46.
Z.
Cui
,
J.
Zhao
,
L.
He
,
H.
Jin
,
J.
Zhang
, and
D.
Wen
, “
A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets
,”
Phys. Fluids
32
,
112110
(
2020
).
47.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
(
1995
).
48.
M.
Feng
,
X. Z.
Jiang
, and
K. H.
Luo
, “
A reactive molecular dynamics simulation study of methane oxidation assisted by platinum/graphene-based catalysts
,”
Proc. Combust. Inst.
37
,
5473
(
2019
).
49.
D.
Hou
,
Z.
Lu
,
X.
Li
,
H.
Ma
, and
Z.
Li
, “
Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms
,”
Carbon
115
,
188
(
2017
).
50.
Y.
Ma
,
Y.
Yang
,
C.
Lu
,
X.
Wen
,
X.
Liu
,
K.
Lu
,
S.
Wu
, and
Q.
Liu
, “
Extraordinary improvement of ablation resistance of carbon/phenolic composites reinforced with low loading of graphene oxide
,”
Compos. Sci. Technol.
167
,
53
(
2018
).
51.
S. S.
Sawant
,
P.
Rao
,
A.
Harpale
,
H. B.
Chew
, and
D. A.
Levin
, “
Multi-scale thermal response modeling of an AVCOAT-like thermal protection material
,”
Int. J. Heat Mass Transfer
133
,
1176
(
2019
).
52.
A.
Harpale
,
S.
Sawant
,
R.
Kumar
,
D.
Levin
, and
H. B.
Chew
, “
Ablative thermal protection systems: Pyrolysis modeling by scale-bridging molecular dynamics
,”
Carbon
130
,
315
(
2018
).
53.
L.-Y.
Hou
,
N.
Dong
,
Z.-Y.
Ren
,
B.
Zhang
, and
S.-L.
Hu
, “
Cooling and coke deposition of hydrocarbon fuel with catalytic steam reforming
,”
Fuel Process. Technol.
128
,
128
(
2014
).
54.
H.
Wang
,
Z.
Yang
,
J.
Liu
,
G.
Li
, and
X.
Zhang
, “
Activating ABO3-type coating by additive for coke inhibition in supercritical thermal cracking of endothermic hydrocarbon fuel
,”
Fuel Process. Technol.
198
,
106229
(
2020
).
55.
R.
Metzler
,
J.-H.
Jeon
,
A. G.
Cherstvy
, and
E.
Barkai
, “
Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,”
Phys. Chem. Chem. Phys.
16
,
24128
(
2014
).
56.
S.
Burov
,
J.-H.
Jeon
,
R.
Metzler
, and
E.
Barkai
, “
Single particle tracking in systems showing anomalous diffusion: The role of weak ergodicity breaking
,”
Phys. Chem. Chem. Phys.
13
,
1800
(
2011
).
57.
P.
Yu
,
J.
Wang
,
J.
Chen
,
J.
Guo
,
H.
Yang
, and
Q.
Chen
, “
Successful control of phosphorus release from sediments using oxygen nano-bubble-modified minerals
,”
Sci. Total Environ.
663
,
654
(
2019
).
58.
A.
Dash
,
S.
Samanta
, and
B.
Mohanty
, “
Transport coefficients for multicomponent gas of hadrons using Chapman–Enskog method
,”
Phys. Rev. D
100
,
014025
(
2019
).
59.
V.
Tahmasbi
and
S.
Noori
, “
Multidimensional numerical analysis of the thermal behavior and pyrolysis gas flow inside an orthotropic porous material
,”
J. Heat Transfer
142
,
062701
(
2020
).
60.
F.
Miró Miró
,
P.
Dehairs
,
F.
Pinna
,
M.
Gkolia
,
D.
Masutti
,
T.
Regert
, and
O.
Chazot
, “
Effect of wall blowing on hypersonic boundary-layer transition
,”
AIAA J.
57
,
1567
(
2019
).
61.
T.
Zheng
,
K.
Jiang
, and
H.
Wang
, “
Recent advances in electrochemical CO2‐to‐CO conversion on heterogeneous catalysts
,”
Adv. Mater.
30
,
1802066
(
2018
).
62.
R.
Kortlever
,
J.
Shen
,
K. J. P.
Schouten
,
F.
Calle-Vallejo
, and
M. T.
Koper
, “
Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide
,”
J. Phys. Chem. Lett.
6
,
4073
(
2015
).
63.
R.
Li
and
R. E.
Continetti
, “
Studies of the excited state dynamics of N2O2 by dissociative photodetachment of N2O2
,”
J. Phys. Chem. A
106
,
1183
(
2002
).
64.
Z.
Varga
,
R.
Meana-Pañeda
,
G.
Song
,
Y.
Paukku
, and
D. G.
Truhlar
, “
Potential energy surface of triplet N2O2
,”
J. Chem. Phys.
144
,
024310
(
2016
).
You do not currently have access to this content.