Physiological transport of fluid at small scales is often achieved by microscopic active fingerlike structures. It is recognized that they have to move in a non-symmetric fashion in order to break the symmetry of creeping flow and to induce a net movement of the fluid. However, in the limit of low, but non-vanishing, Reynolds number, irreversible flow on long time scales could also be generated by symmetric oscillations of these microstructures. Inspired by small intestine villi, we reported three dimensional direct numerical simulations of the irreversible part of the flow, namely steady streaming flow (SSF), generated by an array of oscillating fingerlike structures. In order to capture these second order flow phenomena, the algorithm was based on a combination of lattice-Boltzmann methods with two relaxation times and the smoothed profile method. SSF was confined inside a steady viscous boundary above the villi. Two steady vortices at the tip of the villi characterized this flow which induced mass transfers between the bulk and the periphery. Strikingly, the spatial extension of these vortices was not solely governed by the Stokes boundary layer but also by the lateral confinement between the villi. Moreover, secondary vortices outside the steady boundary layer were also observed. These findings were rationalized in a state diagram showing three regimes of SSF. Finally, orders of magnitude showed that SSF should contribute to the transport of particles, such as bacteria or nano-particles, on a layer a few hundred micrometers above the villi and on a time scale of few minutes.

1.
R.
Lentle
,
P.
Janssen
,
C.
de Loubens
,
Y.
Lim
,
C.
Hulls
, and
P.
Chambers
, “
Mucosal microfolds augment mixing at the wall of the distal ileum of the brushtail possum
,”
Neurogastroenterol. Motil.
25
,
881-e700
(
2013
).
2.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
,
3
11
(
1977
).
3.
J. O.
Dabiri
, “
Landmarks and frontiers in biological fluid dynamics
,”
Phys. Rev. Fluids
4
,
110501
(
2019
).
4.
K.
Margaris
and
R. A.
Black
, “
Modelling the lymphatic system: Challenges and opportunities
,”
J. R. Soc. Interface
9
,
601
612
(
2012
).
5.
W. F.
Marshall
and
C.
Kintner
, “
Cilia orientation and the fluid mechanics of development
,”
Curr. Opin. Cell Biol.
20
,
48
52
(
2008
).
6.
C.
Brennen
and
H.
Winet
, “
Fluid mechanics of propulsion by cilia and flagella
,”
Annu. Rev. Fluid Mech.
9
,
339
398
(
1977
).
7.
A.
Dauptain
,
J.
Favier
, and
A.
Bottaro
, “
Hydrodynamics of ciliary propulsion
,”
J. Fluids Struct.
24
,
1156
1165
(
2008
).
8.
B.
Siyahhan
,
V.
Knobloch
,
D.
de Zélicourt
,
M.
Asgari
,
M.
Schmid Daners
,
D.
Poulikakos
, and
V.
Kurtcuoglu
, “
Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles
,”
J. R. Soc. Interface
11
,
20131189
(
2014
).
9.
D. J.
Smith
,
T. D.
Montenegro-Johnson
, and
S. S.
Lopes
, “
Symmetry-breaking cilia-driven flow in embryogenesis
,”
Annu. Rev. Fluid Mech.
51
,
105
128
(
2019
).
10.
E.
Loiseau
,
S.
Gsell
,
A.
Nommick
,
C.
Jomard
,
D.
Gras
,
P.
Chanez
,
U.
D'ortona
,
L.
Kodjabachian
,
J.
Favier
, and
A.
Viallat
, “
Active mucus–cilia hydrodynamic coupling drives self-organization of human bronchial epithelium
,”
Nat. Phys.
16
,
1158
1164
(
2020
).
11.
K.
Schulze
, “
Imaging and modelling of digestion in the stomach and the duodenum
,”
Neurogastroenterol. Motil.
18
,
172
183
(
2006
).
12.
R.
Lentle
and
C.
De Loubens
, “
A review of mixing and propulsion of chyme in the small intestine: Fresh insights from new methods
,”
J. Comp. Physiol., B
185
,
369
387
(
2015
).
13.
A.
Strocchi
and
M. D.
Levitt
, “
Role of villous surface area in absorption science versus religion
,”
Dig. Dis. Sci.
38
,
385
387
(
1993
).
14.
H.
Westergaard
,
K.
Holtermuller
, and
J. M.
Dietschy
, “
Measurement of resistance of barriers to solute transport in vivo in rat jejunum
,”
Am. J. Physiol.: Gastrointest. Liver Physiol.
250
,
G727
G735
(
1986
).
15.
D.
Mailman
,
W. A.
Womack
,
P. R.
Kvietys
, and
D. N.
Granger
, “
Villous motility and unstirred water layers in canine intestine
,”
Am. J. Physiol.: Gastrointest. Liver Physiol.
258
,
G238
G246
(
1990
).
16.
M. D.
Levitt
,
A.
Strocchi
, and
D. G.
Levitt
, “
Human jejunal unstirred layer: Evidence for extremely efficient luminal stirring
,”
Am. J. Physiol.: Gastrointest. Liver Physiol.
262
,
G593
G596
(
1992
).
17.
M.
Gruby
and
M.
Delafond
, “
Resultats des recherches faites sur l'anatomie et les fonctions des villosites intestinales, l'absorption, la preparation et la composition organique du chyle DANS LES animaux
,”
C. R. Acad. Sci.
16
,
1194
1197
(
1843
), https://gallica.bnf.fr/ark:/12148/bpt6k29751/f1194.item.
18.
B.
Hambleton
, “
Note upon the movements of the intestinal villi
,”
Am. J. Physiol.: Legacy Content
34
,
446
447
(
1914
).
19.
E.
Kokas
, “
Intestinal villous motility and its regulation
,”
Am. J. Dig. Dis.
10
,
974
976
(
1965
).
20.
W.
Joyner
and
E.
Kokas
, “
Effect of various gastrointestinal hormones and vasoactive substances on villous motility
,”
Comp. Biochem. Physiol., Part A
46
,
171
181
(
1973
).
21.
W. A.
Womack
,
J. A.
Barrowman
,
W. H.
Graham
,
J. N.
Benoit
,
P. R.
Kvietys
, and
D. N.
Granger
, “
Quantitative assessment of villous motility
,”
Am. J. Physiol.: Gastrointest. Liver Physiol.
252
,
G250
G256
(
1987
).
22.
Y. F.
Lim
,
R. G.
Lentle
,
P. W.
Janssen
,
M. A.
Williams
,
C.
de Loubens
,
B. W.
Mansel
, and
P.
Chambers
, “
Determination of villous rigidity in the distal ileum of the possum (Trichosurus vulpecula)
,”
PLoS One
9
,
e100140
(
2014
).
23.
Y.
Lim
,
C.
de Loubens
,
R.
Love
,
R.
Lentle
, and
P.
Janssen
, “
Flow and mixing by small intestine villi
,”
Food Funct.
6
,
1787
1795
(
2015
).
24.
Y.
Zhang
,
P.
Wu
,
R.
Jeantet
,
D.
Dupont
,
G.
Delaplace
,
X. D.
Chen
, and
J.
Xiao
, “
How motility can enhance mass transfer and absorption in the duodenum: Taking the structure of the villi into account
,”
Chem. Eng. Sci.
213
,
115406
(
2020
).
25.
R. G.
Lentle
and
P. W.
Janssen
,
The Physical Processes of Digestion
(
Springer Science & Business Media
,
2011
).
26.
N.
Riley
, “
Steady streaming
,”
Annu. Rev. Fluid Mech.
33
,
43
65
(
2001
).
27.
M.
Costalonga
,
P.
Brunet
, and
H.
Peerhossaini
, “
Low frequency vibration induced streaming in a Hele-Shaw cell
,”
Phys. Fluids
27
,
013101
(
2015
).
28.
J.
Holtsmark
,
I.
Johnsen
,
T.
Sikkeland
, and
S.
Skavlem
, “
Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid
,”
J. Acoust. Soc. Am.
26
,
26
39
(
1954
).
29.
M.
Tatsuno
, “
Circulatory streaming around an oscillating circular cylinder at low Reynolds numbers
,”
J. Phys. Soc. Jpn.
35
,
915
920
(
1973
).
30.
M.
Mackley
and
X.
Ni
, “
Mixing and dispersion in a baffled tube for steady laminar and pulsatile flow
,”
Chem. Eng. Sci.
46
,
3139
3151
(
1991
).
31.
B.
Dincau
,
E.
Dressaire
, and
A.
Sauret
, “
Pulsatile flow in microfluidic systems
,”
Small
16
,
1904032
(
2020
).
32.
A.
Karimi
,
S.
Yazdi
, and
A.
Ardekani
, “
Hydrodynamic mechanisms of cell and particle trapping in microfluidics
,”
Biomicrofluidics
7
,
021501
(
2013
).
33.
T.
Dombrowski
,
S. K.
Jones
,
G.
Katsikis
,
A. P. S.
Bhalla
,
B. E.
Griffith
, and
D.
Klotsa
, “
Transition in swimming direction in a model self-propelled inertial swimmer
,”
Phys. Rev. Fluids
4
,
021101
(
2019
).
34.
H.
Kumar
,
M. H.
Tawhai
,
E. A.
Hoffman
, and
C.-L.
Lin
, “
Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows
,”
Phys. Fluids
23
,
041902
(
2011
).
35.
R.
Lentle
,
C.
De Loubens
,
C.
Hulls
,
P.
Janssen
,
M.
Golding
, and
J.
Chambers
, “
A comparison of the organization of longitudinal and circular contractions during pendular and segmental activity in the duodenum of the rat and guinea pig
,”
Neurogastroenterol. Motil.
24
,
686-e298
(
2012
).
36.
C.
de Loubens
,
R. G.
Lentle
,
R. J.
Love
,
C.
Hulls
, and
P. W.
Janssen
, “
Fluid mechanical consequences of pendular activity, segmentation and pyloric outflow in the proximal duodenum of the rat and the guinea pig
,”
J. R. Soc. Interface
10
,
20130027
(
2013
).
37.
Y.
Hosoyamada
and
T.
Sakai
, “
Structural and mechanical architecture of the intestinal villi and crypts in the rat intestine: Integrative reevaluation from ultrastructural analysis
,”
Anat. Embryol.
210
,
1
12
(
2005
).
38.
I.
Ginzburg
,
F.
Verhaeghe
, and
D.
d'Humieres
, “
Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions
,”
Commun. Comput. Phys.
3
,
427
478
(
2008
).
39.
D.
Rui
and
B.-c.
Shi
, “
Incompressible multi-relaxation-time lattice Boltzmann model in 3-D space
,”
J. Hydrodyn., Ser. B
22
,
782
787
(
2010
).
40.
D.
d'Humières
and
I.
Ginzburg
, “
Viscosity independent numerical errors for lattice Boltzmann models: From recurrence equations to ‘magic’ collision numbers
,”
Comput. Math. Appl.
58
,
823
840
(
2009
).
41.
Y.
Nakayama
and
R.
Yamamoto
, “
Simulation method to resolve hydrodynamic interactions in colloidal dispersions
,”
Phys. Rev. E
71
,
036707
(
2005
).
42.
S.
Jafari
,
R.
Yamamoto
, and
M.
Rahnama
, “
Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions
,”
Phys. Rev. E
83
,
026702
(
2011
).
43.
M.
Bouzidi
,
M.
Firdaouss
, and
P.
Lallemand
, “
Momentum transfer of a Boltzmann-lattice fluid with boundaries
,”
Phys. Fluids
13
,
3452
3459
(
2001
).
44.
P.-H.
Kao
and
R.-J.
Yang
, “
An investigation into curved and moving boundary treatments in the lattice Boltzmann method
,”
J. Comput. Phys.
227
,
5671
5690
(
2008
).
45.
A.
Dupuis
and
B.
Chopard
, “
Theory and applications of an alternative lattice Boltzmann grid refinement algorithm
,”
Phys. Rev. E
67
,
066707
(
2003
).
46.
A.
Bertelsen
,
A.
Svardal
, and
S.
Tjøtta
, “
Nonlinear streaming effects associated with oscillating cylinders
,”
J. Fluid Mech.
59
,
493
511
(
1973
).
47.
K.
Ilin
and
M. A.
Sadiq
, “
Steady viscous flows in an annulus between two cylinders produced by vibrations of the inner cylinder
,” arXiv:1008.4704 (
2010
).
48.
C.
Loudon
and
A.
Tordesillas
, “
The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow
,”
J. Theor. Biol.
191
,
63
78
(
1998
).
49.
B. R.
Lutz
,
J.
Chen
, and
D. T.
Schwartz
, “
Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and stokes layer scaling
,”
Phys. Fluids
17
,
023601
(
2005
).
50.
S.
Kuriu
,
N.
Yamamoto
, and
T.
Ishida
, “
Microfluidic device using mouse small intestinal tissue for the observation of fluidic behavior in the lumen
,”
Micromachines
12
,
692
(
2021
).
51.
C.
de Loubens
,
R. G.
Lentle
,
C.
Hulls
,
P. W.
Janssen
,
R. J.
Love
, and
J. P.
Chambers
, “
Characterisation of mixing in the proximal duodenum of the rat during longitudinal contractions and comparison with a fluid mechanical model based on spatiotemporal motility data
,”
PLoS One
9
,
e95000
(
2014
).
52.
R. J. A.
Agbesi
and
N. R.
Chevalier
, “
Flow and mixing induced by single, colinear, and colliding contractile waves in the intestine
,”
Phys. Rev. Fluids
7
,
043101
(
2022
).
53.
L. M.
Ensign
,
R.
Cone
, and
J.
Hanes
, “
Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers
,”
Adv. Drug Delivery Rev.
64
,
557
570
(
2012
).
54.
J.
Cremer
,
I.
Segota
,
C.-y.
Yang
,
M.
Arnoldini
,
J. T.
Sauls
,
Z.
Zhang
,
E.
Gutierrez
,
A.
Groisman
, and
T.
Hwa
, “
Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel
,”
Proc. Natl. Acad. Sci.
113
,
11414
11419
(
2016
).
55.
S.
Labarthe
,
B.
Polizzi
,
T.
Phan
,
T.
Goudon
,
M.
Ribot
, and
B.
Laroche
, “
A mathematical model to investigate the key drivers of the biogeography of the colon microbiota
,”
J. Theor. Biol.
462
,
552
581
(
2019
).
56.
D.
Hoces
,
M.
Arnoldini
,
M.
Diard
,
C.
Loverdo
, and
E.
Slack
, “
Growing, evolving and sticking in a flowing environment: Understanding IgA interactions with bacteria in the gut
,”
Immunology
159
,
52
62
(
2020
).
57.
B.
Waclawiková
,
A.
Codutti
,
K.
Alim
, and
S.
El Aidy
, “
Gut microbiota-motility interregulation: Insights from in vivo, ex vivo and in silico studies
,”
Gut Microbes
14
,
1997296
(
2022
).
58.
D.
Labavić
,
C.
Loverdo
, and
A.-F.
Bitbol
, “
Hydrodynamic flow and concentration gradients in the gut enhance neutral bacterial diversity
,”
Proc. Natl. Acad. Sci.
119
,
e2108671119
(
2022
).
You do not currently have access to this content.