The unprecedented amount of data and the advancement of machine learning methods are driving the rapid development of data-driven modeling in the community of fluid mechanics. In this work, a data-driven strategy is developed by the combination of the direct simulation Monte Carlo (DSMC) method and the gene expression programming (GEP) method. DSMC is a molecular simulation method without any assumed macroscopic governing equations a priori and is employed to generate data of flow fields, while the enhanced GEP method is leveraged to discover governing equations. We first validate our idea using two benchmarks, such as the Burgers equation and Sine–Gordon equation. Then, we apply the strategy to discover governing equations hidden in the complex fluid dynamics. Our results demonstrate that in the continuum regime, the discovered equations are consistent with the traditional ones with linear constitutive relations, while in the non-continuum regime such as shock wave, the discovered equation comprises of high-order constitutive relations, which are similar to those in the Burnett equation but with modified coefficients. Compared to the Navier–Stokes–Fourier equations and the Burnett equation, the prediction of the viscous stress and heat flux in the shock wave via the presented data-driven model has the best match to the DSMC data. It is promising to extend the proposed data-driven strategy to more complex problems and discover hidden governing equations which may be unknown so far.

1.
V.
Marx
, “
The big challenges of big data
,”
Nature
498
,
255
260
(
2013
).
2.
M. I.
Jordan
and
T. M.
Mitchell
, “
Machine learning: Trends, perspectives, and prospects
,”
Science
349
,
255
260
(
2015
).
3.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
4.
G. E.
Karniadakis
,
I. G.
Kevrekidis
,
L.
Lu
,
P.
Perdikaris
,
S.
Wang
, and
L.
Yang
, “
Physics-informed machine learning
,”
Nat. Rev. Phys.
3
,
422
440
(
2021
).
5.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
6.
S.
Pawar
,
S. E.
Ahmed
,
O.
San
, and
A.
Rasheed
, “
Data-driven recovery of hidden physics in reduced order modeling of fluid flows
,”
Phys. Fluids
32
,
036602
(
2020
).
7.
W.
Ma
,
J.
Zhang
, and
J.
Yu
, “
Non-intrusive reduced order modeling for flowfield reconstruction based on residual neural network
,”
Acta Astronaut.
183
,
346
362
(
2021
).
8.
M.
Yang
and
Z.
Xiao
, “
Improving the k–ω–γ–Ar transition model by the field inversion and machine learning framework
,”
Phys. Fluids
32
,
064101
(
2020
).
9.
H.
Wang
,
Z.
Yang
,
B.
Li
, and
S.
Wang
, “
Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry
,”
Phys. Fluids
32
,
115105
(
2020
).
10.
Z.
Deng
,
C.
He
, and
Y.
Liu
, “
Deep neural network-based strategy for optimal sensor placement in data assimilation of turbulent flow
,”
Phys. Fluids
33
,
025119
(
2021
).
11.
C.
Jiang
,
R.
Vinuesa
,
R.
Chen
,
J.
Mi
,
S.
Laima
, and
H.
Li
, “
An interpretable framework of data-driven turbulence modeling using deep neural networks
,”
Phys. Fluids
33
,
055133
(
2021
).
12.
R.
Tibshirani
, “
Regression shrinkage and selection via the lasso
,”
J. R. Stat. Soc., Ser. B
58
,
267
288
(
1996
).
13.
K. P.
Murphy
,
Machine Learning: A Probabilistic Perspective
(
MIT Press
,
2012
).
14.
H.
Zou
and
T.
Hastie
, “
Regularization and variable selection via the elastic net
,”
J. R. Stat. Soc., Ser. B
67
,
301
320
(
2005
).
15.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
3932
3937
(
2016
).
16.
S. H.
Rudy
,
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Data-driven discovery of partial differential equations
,”
Sci. Adv.
3
,
e1602614
(
2017
).
17.
J. R.
Koza
,
Genetic Programming: On the programming of Computers by Means of Natural Selection
(
MIT Press
,
1992
).
18.
M.
Schmidt
and
H.
Lipson
, “
Distilling free-form natural laws from experimental data
,”
Science
324
,
81
85
(
2009
).
19.
M.
O'Neill
and
C.
Ryan
, “
Grammatical evolution
,”
IEEE Trans. Evol. Comput.
5
,
349
358
(
2001
).
20.
M. F.
Brameier
and
W.
Banzhaf
,
Linear Genetic Programming
(
Springer Science & Business Media
,
2007
).
21.
C.
Ferreira
,
Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence
(
Springer
,
2006
).
22.
J.
Weatheritt
and
R.
Sandberg
, “
A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship
,”
J. Comput. Phys.
325
,
22
37
(
2016
).
23.
H.
Li
,
Y.
Zhao
,
J.
Wang
, and
R. D.
Sandberg
, “
Data-driven model development for large-eddy simulation of turbulence using gene-expression programing
,”
Phys. Fluids
33
,
125127
(
2021
).
24.
H.
Vaddireddy
,
A.
Rasheed
,
A. E.
Staples
, and
O.
San
, “
Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data
,”
Phys. Fluids
32
,
015113
(
2020
).
25.
J.
Zhang
and
W.
Ma
, “
Data-driven discovery of governing equations for fluid dynamics based on molecular simulation
,”
J. Fluid Mech.
892
,
A5
(
2020
).
26.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
1994
).
27.
A.
Manela
and
J.
Zhang
, “
The effect of compressibility on the stability of wall-bounded Kolmogorov flow
,”
J. Fluid Mech.
694
,
29
49
(
2012
).
28.
Q.
Ma
,
C.
Yang
,
D.
Bruno
, and
J.
Zhang
, “
Molecular simulation of Rayleigh-Brillouin scattering in binary gas mixtures and extraction of the rotational relaxation numbers
,”
Phys. Rev. E
104
,
035109
(
2021
).
29.
J.
Zhang
,
B.
John
,
M.
Pfeiffer
,
F.
Fei
, and
D.
Wen
, “
Particle-based hybrid and multiscale methods for nonequilibrium gas flows
,”
Adv. Aerodyn.
1
,
12
(
2019
).
30.
W.
Liu
,
J.
Zhang
,
Y.
Jiang
,
L.
Chen
, and
C.-H.
Lee
, “
DSMC study of hypersonic rarefied flow using the Cercignani–Lampis–Lord model and a molecular-dynamics-based scattering database
,”
Phys. Fluids
33
,
072003
(
2021
).
31.
J.
Zhong
,
X.
Hu
,
J.
Zhang
, and
M.
Gu
, “
Comparison of performance between different selection strategies on simple genetic algorithms
,” in
International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce
(
IEEE
,
Vienna, Austria
,
2005
), pp.
1115
1121
.
32.
C.
Ferreira
,
Gene Expression Programming in Problem Solving
(
Springer
,
2002
).
33.
J.
Zhong
,
L.
Feng
, and
Y.-S.
Ong
, “
Gene expression programming: A survey
,”
IEEE Comput. Intell. Mag.
12
,
54
72
(
2017
).
34.
C. A. C.
Coello
, “
Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
,”
Comput. Methods Appl. Mech. Eng.
191
,
1245
1287
(
2002
).
35.
M.
Maleewong
and
S.
Sirisup
, “
On-line and off-line POD assisted projective integral for non-linear problems: A case study with Burgers' equation
,”
Int. J. Math. Comput. Sci.
5
,
984
992
(
2011
).
36.
I. D.
Boyd
,
G.
Chen
, and
G. V.
Candler
, “
Predicting failure of the continuum fluid equations in transitional hypersonic flows
,”
Phys. Fluids
7
,
210
219
(
1995
).
37.
H.
Struchtrup
,
Macroscopic Transport Equations for Rarefied Gas Flows
(
Springer
,
2005
).
38.
D.
Burnett
, “
The distribution of molecular velocities and the mean motion in a non-uniform gas
,”
Proc. London Math. Soc.
2
,
382
435
(
1936
).
39.
M. S.
Shavaliyev
, “
Super-Burnett corrections to the stress tensor and the heat flux in a gas of Maxwellian molecules
,”
Appl. Math. Mech.
57
,
573
576
(
1993
).
40.
R. K.
Agarwal
,
K.-Y.
Yun
, and
R.
Balakrishnan
, “
Beyond Navier–Stokes: Burnett equations for flows in the continuum–transition regime
,”
Phys. Fluids
13
,
3061
3085
(
2001
).
41.
F.
Fei
,
H.
Liu
,
Z.
Liu
, and
J.
Zhang
, “
A benchmark study of kinetic models for shock waves
,”
AIAA J.
58
,
2596
2608
(
2020
).
42.
E.
Oran
,
C.
Oh
, and
B.
Cybyk
, “
Direct simulation Monte Carlo: Recent advances and applications
,”
Annu. Rev. Fluid Mech.
30
,
403
441
(
1998
).
43.
T.
Xiao
and
M.
Frank
, “
Using neural networks to accelerate the solution of the Boltzmann equation
,”
J. Comput. Phys.
443
,
110521
(
2021
).
44.
Y.
Morii
and
T.
Kawakatsu
, “
Lagrangian multiscale simulation of complex flows
,”
Phys. Fluids
33
,
093106
(
2021
).
45.
W.
Zhao
,
L.
Jiang
,
S.
Yao
, and
W.
Chen
, “
Data-driven nonlinear constitutive relations for rarefied flow computations
,”
Adv. Aerodyn.
3
,
30
(
2021
).
You do not currently have access to this content.