The theoretical study of the processes of the outflow of a binary gas mixture from a source into a vacuum through an orifice in an infinitely thin wall is presented. Two mixtures with a large species mass ratio K are considered: Au–Ne (K = 9.76) and Au–He (K = 49.21). The work continues the study of the flow of Ag–He mixture (K = 26.95) started in Bykov and Zakharov [“Binary gas mixture outflow into vacuum through an orifice,” Phys. Fluids 32, 067109 (2020)]. The results of the direct simulation Monte Carlo made it possible to propose approximations of the mass flow rates of the species and the mixture depending on the species mass ratio, the flow rarefaction degree, and the mole fraction of light species in the source. It is shown that with an increase in the parameter K, an increase in the dimensionless mass flow rate of the mixture referred to the corresponding free molecular value is observed. The maximum dimensionless flow rate corresponds to the near-continuum regime and exceeds the value obtained using the hydrodynamic approximation and the equivalent single gas approach. A variation of K also leads to changes in the spatial distributions of the dimensionless density and velocity of the mixture and some axial focusing of the flow. An increase in the species mass ratio for the case of a small initial mole fraction of the heavy species in the source for a flow regime close to the hydrodynamic one leads to an increase in acceleration and axial focusing of the heavy species.

1.
O. F.
Hagena
, “
Silver clusters from nozzle expansions
,”
Z. Phys. D
17
,
157
158
(
1990
).
2.
O. F.
Hagena
, “
Formation of silver clusters in nozzle expansion
,”
Z. Phys. D
20
,
425
428
(
1991
).
3.
P. G.
Jamkhande
,
N. W.
Ghule
,
A. H.
Bamer
, and
M. G.
Kalaskar
, “
Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications
,”
J. Drug Delivery Sci. Technol.
53
,
101174
(
2019
).
4.
M. N.
Andreev
,
A. K.
Rebrov
,
A. I.
Safonov
, and
N. I.
Timoshenko
, “
The gas jet synthesis of silver nanoparticles
,”
Nanotechnol. Russ.
6
,
587
592
(
2011
).
5.
B. M.
Smirnov
, “
Metal nanostructures: From clusters to nanocatalysis and sensors
,”
Phys.-Usp.
60
,
1236
1267
(
2017
).
6.
N. Y.
Bykov
,
A. I.
Safonov
,
D. V.
Leshchev
,
S. V.
Starinskiy
, and
A. V.
Bulgakov
, “
The gas-jet method of deposition of nanostructured silver films
,”
Tech. Phys.
64
,
776
789
(
2019
).
7.
S. V.
Starinskiy
,
A. I.
Safonov
,
Y. G.
Shukhov
,
V. S.
Sulyeva
,
I. V.
Korolkov
,
V. A.
Volodin
,
L. S.
Kibis
, and
A. V.
Bulgakov
, “
Nanostructured silver substrates produced by cluster-assisted gas jet deposition for surface-enhanced Raman spectroscopy
,”
Vacuum
199
,
110929
(
2022
).
8.
J. H.
Hsieh
,
T. H.
Yeh
,
C.
Li
,
C. H.
Chiu
, and
C. T.
Huang
, “
Antibacterial properties of TaNe(Ag,Cu) nanocomposite thin films
,”
Vacuum
87
,
160
163
(
2013
).
9.
A.
Amini
,
M.
Kamali
,
B.
Amini
, and
A.
Najafi
, “
Enhanced antibacterial activity of imipenem immobilized on surface of spherical and rod gold nanoparticles
,”
J. Phys. D: Appl. Phys.
52
,
065401
(
2019
).
10.
Micropropulsion for Small Spacecraft
, Progress in Astronautics and Aeronautics, edited by
M. M.
Micci
and
A. D.
Ketsdever
(
AIAA
,
Reston, VA
,
2000
), Vol.
187
.
11.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows
(
Springer
,
NY
,
2005
).
12.
M.
Yew
,
Y.
Ren
,
K. S.
Koh
,
C.
Sun
, and
C.
Snape
, “
A review of state-of-the-art microfluidic technologies for environmental applications: Detection and remediation
,”
Global Challenges
3
,
1800060
(
2019
).
13.
J. K.
Robertson
, “
A vertical micromachined resistive heater for a micro-gas separation column
,”
Sens. Actuators, A
91
,
333
339
(
2001
).
14.
V. V.
Zakharov
,
J.-F.
Crifo
,
A. V.
Rodionov
,
M.
Rubin
, and
K.
Altwegg
, “
The near-nucleus gas coma of comet 67P/Churyumov-Gerasimenko prior to the descent of the surface lander PHILAE
,”
Astron. Astrophys.
618
,
A71
(
2018
).
15.
M.
Combi
,
Y.
Shou
,
N.
Fougere
,
V.
Tenishev
,
K.
Altwegg
,
M.
Rubin
,
D.
Bockelée-Morvan
,
F.
Capaccioni
,
Y.-C.
Cheng
,
U.
Finke
,
T.
Gombosi
,
K. C.
Hansena
,
Z.
Huanga
,
D.
Marshall
, and
G.
Totha
, “
The surface distributions of the production of the major volatile species, H2O, CO2, CO and O2, from the nucleus of comet 67P/Churyumov-Gerasimenko throughout the Rosetta Mission as measured by the ROSINA double focusing mass spectrometer
,”
Icarus
335
,
113421
(
2020
).
16.
M.
Läuter
,
T.
Kramer
,
M.
Rubin
, and
K.
Altwegg
, “
The gas production of 14 species from comet 67P/Churyumov-Gerasimenko based on DFMS/COPS data from 2014 to 2016
,”
MNRAS
498
,
3995
4004
(
2020
).
17.
D.
Bockelèe-Morvan
, “
Cometary science with ALMA
,”
Astrophysics and Space Science
313
,
183
189
(
2008
).
18.
M.
Rubin
,
K.
Altwegg
,
H.
Balsiger
,
J.-J.
Berthelier
,
M. R.
Combi
,
J. D.
Keyser
,
M.
Drozdovskaya
,
B.
Fiethe
,
S. A.
Fuselier
,
S.
Gasc
,
T. I.
Gombosi
,
N.
Hänni
,
K. C.
Hansen
,
U.
Mall
,
H.
Rème
,
I. R. H. G.
Schroeder
,
M.
Schuhmann
,
T.
Sémon
,
J. H.
Waite
,
S. F.
Wampfler
, and
P.
Wurz
, “
Elemental and molecular abundances in comet 67P/Churyumov-Gerasimenko
,”
MNRAS
489
,
594
607
(
2019
).
19.
F. S.
Sherman
, “
Hydrodynamical theory of diffusive separation of mixtures in a free jet
,”
Phys. Fluids
8
,
773
779
(
1965
).
20.
A. V.
Lazarev
,
K. A.
Tatarenko
, and
A. Y.
Amerik
, “
Aerodynamic acceleration of heavy particles in a supersonic jet of a binary mixture of gases with disparate-mass components
,”
Phys. Fluids
29
,
087101
(
2017
).
21.
V. M.
Zhdanov
,
V. A.
Zaznoba
, and
A. A.
Stepanenko
, “
Gas mixture flow, diffusion, and heat transfer in a long tube at moderately small Knudsen numbers
,”
Phys. Fluids
33
,
012106
(
2021
).
22.
S. S.
Sitnikov
,
F. G.
Tcheremissine
, and
T. A.
Sazykina
, “
Simulation of the initial stage of a two-component rarefied gas mixture outflow through a thin slit into vacuum
,”
Comput. Res. Model.
13
,
747
759
(
2021
).
23.
R. J.
Cattolica
,
R. J.
Gallagher
,
J. B.
Anderson
, and
L.
Talbot
, “
Aerodynamic separation of gases by velocity slip in freejet expansions
,”
AIAA J.
17
,
344
355
(
1978
).
24.
A. U.
Chatwani
and
M.
Fiebig
, “
Source expansion of monatomic gas mixtures,” in Rarefied Gas Dynamics, Parts I and II
,
Progress in Astronautics and Aeronautics
, edited by
S. S.
Fisher
(
AIAA
,
NY
,
1981
), Vol.
74
, pp.
785
801
.
25.
Y. E.
Gorbachev
,
V. Y.
Kruglov
, and
T.
Ryabinina
, “
Escape into a vacuum of a binary gas mixture with components of considerably different molecular weights
,”
J. Eng. Phys.
58
,
722
727
(
1990
).
26.
F.
Sharipov
and
D.
Kalempa
, “
Separation phenomena for gaseous mixture flowing through a long tube into vacuum
,”
Phys. Fluids
17
,
127102
(
2005
).
27.
M.
Vargas
,
S.
Naris
,
D.
Valougeorgis
,
S.
Pantazis
, and
K.
Jousten
, “
Time-dependent rarefied gas flow of single gases and binary gas mixtures into vacuum
,”
Vacuum
109
,
385
396
(
2014
).
28.
D.
Valougeorgis
,
M.
Vargas
, and
S.
Naris
, “
Analysis of gas separation, conductance and equivalent single gas approach for binary gas mixture flow expansion through tubes of various lengths into vacuum
,”
Vacuum
128
,
1
8
(
2016
).
29.
F.
Sharipov
, “
Ab initio simulation of gaseous mixture flow through an orifice
,”
Vacuum
143
,
106
118
(
2017
).
30.
M.
Sabouri
and
M.
Darbandi
, “
Numerical study of species separation in rarefied gas mixture flow through micronozzles using DSMC
,”
Phys. Fluids
31
,
042004
(
2019
).
31.
N. Y.
Bykov
and
V. V.
Zakharov
, “
Binary gas mixture outflow into vacuum through an orifice
,”
Phys. Fluids
32
,
067109
(
2020
).
32.
V.
Kosyanchuk
and
A.
Yakunchikov
, “
Separation of a binary gas mixture outflowing into vacuum through a micronozzle
,”
Phys. Fluids
33
,
082007
(
2021
).
33.
A.
Kogan
, “
Separation of a gas mixture in curved supersonic flow
,”
Int. J. Heat Mass Transfer
9
,
1
10
(
1966
).
34.
J. B.
Anderson
, “
Separation of gas mixtures in free jets
,”
AIChE J.
13
,
1188
1192
(
1967
).
35.
M.
Hisashi
and
T.
Yoichi
, “
Separation of gas mixture in an axisymmetric supersonic jet
,”
Int. J. Heat Mass Transfer
11
,
1597
1610
(
1968
).
36.
T. D.
McCay
and
L. L.
Price
, “
Diffusive separation of binary mixtures of CO2-H2 in a sonic-orifice expansion
,”
Phys. Fluids
26
,
2115
2119
(
1983
).
37.
R.
Johnsen
and
B. K.
Chatterjee
, “
Flow of binary gas mixtures through small sampling orifices
,”
J. Vac. Sci. Technol. A
29
,
011002
(
2011
).
38.
N.
Wei
,
Y.
Feng
,
W.
Sun
,
Y.
Cheng
,
M.
Dong
,
Y.
Song
,
C.
Wu
,
G.
Liu
, and
Y.
Qiu
, “
Experimental study on the conductance of pure and binary gas mixtures
,”
Vacuum
189
,
110277
(
2021
).
39.
R.
Gao
,
S.
O'Byrne
,
F.
Sharipov
, and
J.-L.
Liow
, “
Experimental investigation of the separation of binary gaseous mixtures flowing through a capillary tube
,”
Phys. Fluids
32
,
112008
(
2020
).
40.
N. Y.
Bykov
and
V. V.
Zakharov
, “
An increase in the density and flow rate of the heavy species under rarefied gas mixture outflow into vacuum
,”
Tech. Phys. Lett.
46
,
729
732
(
2020
).
41.
T.
Fujimoto
and
M.
Usami
, “
Rarefied gas flow through a circular orifice and short tubes
,”
J. Fluids Eng.
106
,
367
373
(
1984
).
42.
G. A.
Bird
,
Molecular Gas Dynamics
(
Clarenton Press
,
Oxford
,
1976
).
43.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarenton Press
,
Oxford
,
1994
).
44.
G. A.
Bird
,
The DSMC Method
(
CreateSpace Independent Publishing Platform
,
2013
).
45.
A. A.
Alexeenko
and
S. F.
Gimelshein
, “
Numerical simulation methods: Direct simulation Monte Carlo
,” in
Handbook of Fluid Dynamics
, edited by
R. W.
Johnson
(
CRC Press
,
NY
,
2016
), Chap. 39, pp.
39.1
39.36
.
46.
A.
Venkattraman
and
A. A.
Alexeenko
, “
Direct simulation Monte Carlo modeling of e-beam metal deposition
,”
J. Vac. Sci. Technol. A
28
,
916
924
(
2010
).
47.
F.
Sharipov
, “
Numerical simulation of rarefied gas flow through a thin orifice
,”
J. Fluid Mech.
518
,
35
60
(
2004
).
48.
S.
Varoutis
,
D.
Valougeorgis
,
O.
Sazhin
, and
F.
Sharipov
, “
Rarefied gas flow through short tubes into vacuum
,”
J. Vac. Sci. Technol. A
26
,
228
238
(
2008
).
49.
N. Y.
Bykov
and
Y. E.
Gorbachev
, “
Cluster formation in copper vapor jet expanding into vacuum: The direct simulation Monte Carlo
,”
Vacuum
163
,
119
127
(
2019
).
50.
Y. A.
Koshmarov
and
Y. A.
Ryzhov
,
Applied Dynamics of Rarefied Gas
(
Mashinostroenie
,
Moscow
,
1977
).
51.
E. M.
Shakhov
, “
Solution of axisymmetric problems of the rarefied gas theory by the method of finite differences
,”
Zh. Vychislitelnoj Matem. Maten. Fiz.
14
,
970
981
(
1974
).
52.
N. S. E.
Zefirov
,
Chemical Encyclopedia
(
Scientific Publishing House Great Russian Encyclopedia
,
Moscow
,
1995
), Vol.
4
.
53.
M. N.
Kogan
,
Dynamics of Rarefied Gas
(
Nauka
,
Moscow
,
1967
).
54.
E. A.
Nagnibeda
and
E. V.
Kustova
,
Kinetic Theory of Transport and Relaxation Processes in Non-Equilibrium Reacting Gas Flows
(
Springer
,
2008
).
You do not currently have access to this content.