We address the impact of rocket exhaust gases on atmospheric pollution through high-resolution computational fluid dynamics simulations. We have modeled the exhaust gases and developing plume at several altitudes along a typical trajectory of a standard present-day rocket, as a prototypical example of a two-stage rocket to transport people and payloads into Earth's orbit and beyond. The modeled rocket uses RP-1 as the propellant and liquid oxygen as the oxidizer to generate ∼6806 kN of thrust via a total of nine nozzles, matching—as closely as possible based on available data—the specifications to the Thaicom 8 launch mission of the Falcon 9 rocket manufactured by SpaceX. We have used high-order discretization methods, 11th-order accurate, in conjunction with implicit large eddy simulations to model exhaust gas mixing, dispersion, and heat transfer into the atmosphere at altitudes up to 67 km. We show that pollution from rockets should not be underestimated as frequent future rocket launches could have a significant cumulative effect on climate. The production of thermal nitrogen oxides can remain considerable up to altitudes with an ambient atmospheric pressure below but of the same order of magnitude as the nozzles exit pressure. At the same time, the emitted mass of carbon dioxide in the mesosphere is equivalent to that contained in 26 km3 of atmospheric air at the same altitude.

1.
M. N.
Ross
and
P. M.
Sheaffer
, “
Radiative forcing caused by rocket engine emissions
,”
Earth's Future
2
,
177
196
(
2014
).
2.
E. J. L.
Larson
,
R. W.
Portmann
,
K. H.
Rosenlof
,
D. W.
Fahey
,
J. S.
Daniel
, and
M. N.
Ross
, “
Global atmospheric response to emissions from a proposed reusable space launch system
,”
Earth's Future
5
,
37
48
(
2017
).
3.
L.
David
, “
How Much Air Pollution is Produced by Rockets?
,” (
Scientific America
,
2017
); available at https://www.scientificamerican.com/article/how-much-air-pollution-is-produced-by-rockets/.
4.
N. R.
Harris
,
D. J.
Wuebbles
,
J. S.
Daniel
,
J.
Hu
,
L. J.
Kuijpers
,
K. S.
Law
,
M. J.
Prather
, and
R.
Schofield
, “
Scenarios and information for policymakers
,” in
Scientific Assessment Ozone Depletion: 2014. Global Ozone Research and Monitoring Project—Report No. 55
(
World Meteorological Organization
,
2014
), Chap. 5,
62
pp.
5.
C.
Voigt
,
U.
Schumann
,
K.
Graf
, and
K.-D.
Gottschaldt
, “
Impact of rocket exhaust plumes on atmospheric composition and climate—An overview
,” in
EUCASS Proceedings Series—Advances in AeroSpace Sciences
, edited by
Array
(
EDP Sciences
,
2013
), Vol.
4
, pp.
657
670
.
6.
D.
Drikakis
,
M.
Hahn
,
A.
Mosedale
, and
B.
Thornber
, “
Large eddy simulation using high-resolution and high-order methods
,”
Proc. R. Soc. A
367
,
2985
2997
(
2009
).
7.
P.
Tsoutsanis
,
I. W.
Kokkinakis
,
L.
Könözsy
,
D.
Drikakis
,
R. J.
Williams
, and
D. L.
Youngs
, “
Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem
,”
Comput. Methods Appl. Mech. Eng.
293
,
207
231
(
2015
).
8.
O.
Zanotti
and
M.
Dumbser
, “
Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables
,”
Comput. Astrophys. Cosmol.
3
,
1
32
(
2016
).
9.
Coarse Grained Simulation and Turbulent Mixing
, edited by
F. F.
Grinstein
(
Cambridge University Press
,
2016
).
10.
F. F.
Grinstein
, “
Coarse grained simulation of convectively driven turbulent mixing, transition, and turbulence decay
,”
Phys. D
407
,
132419
(
2020
).
11.
F. F.
Grinstein
,
J. A.
Saenz
, and
M.
Germano
, “
Coarse grained simulations of shock-driven turbulent material mixing
,”
Phys. Fluids
33
,
035131
(
2021
).
12.
W.
Rider
and
D.
Drikakis
, “
High resolution methods for computing turbulent flows
,” in
Turbulent Flow Computation. Fluid Mechanics and Its Applications
, edited by
D.
Drikakis
and
B.
Geurts
(
Springer
,
Dordrecht
,
2002
), Chap.
2
, pp.
43
74
.
13.
L. G.
Margolin
,
W. J.
Rider
, and
F. F.
Grinstein
, “
Modeling turbulent flow with implicit LES
,”
J. Turbul.
7
,
N15
(
2006
).
14.
F. F.
Grinstein
and
C.
Fureby
, “
On flux-limiting-based implicit large eddy simulation
,”
J. Fluids Eng.
129
,
1483
1492
(
2007
).
15.
Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
, edited by
F.
Grinstein
,
L.
Margolin
, and
W.
Rider
(
Cambridge University Press
,
2007
).
16.
W. J.
Rider
, “
Effective subgrid modeling from the ILES simulation of compressible turbulence
,”
J. Fluids Eng.
129
,
1493
1496
(
2007
).
17.
W. J.
Rider
, “
Building better (weighted) ENO methods
,” in
Computational Fluid Dynamics 2006
, edited by
H.
Deconinck
and
E.
Dick
(
Springer
,
Berlin/Heidelberg
,
2009
).
18.
Z.
Rana
,
B.
Thornber
, and
D.
Drikakis
, “
Transverse jet injection into a supersonic turbulent cross-flow
,”
Phys. Fluids
23
,
046103
(
2011
).
19.
I.
Kokkinakis
and
D.
Drikakis
, “
Implicit large eddy simulation of weakly-compressible turbulent channel flow
,”
Comput. Methods Appl. Mech. Eng.
287
,
229
261
(
2015
).
20.
I.
Kokkinakis
,
D.
Drikakis
,
K.
Ritos
, and
S. M.
Spottswood
, “
Direct numerical simulation of supersonic flow and acoustics over a compression ramp
,”
Phys. Fluids
32
,
066107
(
2020
).
21.
E. F.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock Waves
4
,
25
34
(
1994
).
22.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
, 3rd ed. (
Springer-Verlag
,
Berlin/Heidelberg
,
2009
).
23.
D. S.
Balsara
and
C.-W.
Shu
, “
Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
,”
J. Comput. Phys.
160
,
405
452
(
2000
).
24.
E. M.
Taylor
,
M.
Wu
, and
M. P.
Martín
, “
Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence
,”
J. Comput. Phys.
223
,
384
397
(
2007
).
25.
A. K.
Henrick
,
T. D.
Aslam
, and
J. M.
Powers
, “
Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points
,”
J. Comput. Phys.
207
,
542
567
(
2005
).
26.
R.
Spiteri
and
S.
Ruuth
, “
A new class of optimal high-order strong-stability-preserving time discretization methods
,”
SIAM J. Numer. Anal.
40
,
469
491
(
2002
).
27.
See https://cearun.grc.nasa.gov/intro.html for further information and documentation about CEA (Chemical Equilibrium with Applications).
28.
S.
Gordon
and
B. J.
McBride
, “
Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis
,” Reference Publication No. NASA-RP-1311 (NASA,
Glenn Research Center
,
1994
).
29.
S.
Gordon
and
B. J.
McBride
, “
Computer program for calculation of complex chemical equilibrium compositions and applications. II. Users manual and program description
,” Reference Publication No. NASA-RP-1311-P2 (NASA,
Glenn Research Center
,
1996
).
30.
M. J.
Zehe
,
S.
Gordon
, and
B. J.
McBride
, “
CAP: A computer code for generating tabular thermodynamic functions from NASA Lewis coefficients
,” Technical Publication No. NASA/TP-2001-210959/REV1 (NASA,
Glenn Research Center
,
2002
).
31.
J.
Moss
,
K.
Boyles
, and
F.
Greene
, “
Orion aerodynamics for hypersonic free molecular to continuum conditions
,” in
14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference
(AIAA,
2006
), pp. 1–24.
32.
P. M.
Sforza
, “
Chapter 2—Earth's atmosphere
,” in
Manned Spacecraft Design Principles
, edited by
P. M.
Sforza
(
Butterworth-Heinemann
,
Boston, MA
,
2016
), pp.
13
46
.
33.
D.
Leone
and
S.
Turns
, “
Active chlorine and nitric oxide formation from chemical rocket plume afterburning
,” in
32nd Aerospace Sciences Meeting and Exhibit
(
AIAA
,
1994
).
34.
J.
Beer
and
M.
Jacques
, “
Control of NOx by combustion process modifications
,”
Technical Report No. MIT-EL 81-001
(
MIT Energy Laboratory
,
1981
).
35.
Y. B.
Zel'dovich
, “
The oxidation of nitrogen in combustion and explosions
,”
Acta Physicochim. URSS
21
,
577
628
(
1946
).
36.
S. C.
Wofsy
,
J. C.
McConnell
, and
M. B.
McElroy
, “
Atmospheric CH4, CO, and CO2
,”
J. Geophys. Res.
77
,
4477
4493
, (
1972
).
37.
P. F.
Goldsmith
,
M. M.
Litvak
,
R. L.
Plambeck
, and
D. R. W.
Williams
, “
Carbon monoxide mixing ratio in the mesosphere derived from ground-based microwave measurements
,”
J. Geophys. Res.: Space Phys.
84
,
416
418
, (
1979
).
38.
R. R.
Garcia
,
M.
López-Puertas
,
B.
Funke
,
D. R.
Marsh
,
D. E.
Kinnison
,
A. K.
Smith
, and
F.
González-Galindo
, “
On the distribution of CO2 and CO in the mesosphere and lower thermosphere
,”
J. Geophys. Res.: Atmos.
119
,
5700
5718
, (
2014
).
39.
M.
López-Puertas
and
F. W.
Taylor
,
Non-LTE Radiative Transfer in the Atmosphere
(
World Scientific
,
2001
), p.
504
.
40.
M. G.
Mlynczak
,
F. J.
Martin-Torres
,
C. J.
Mertens
,
B. T.
Marshall
,
R. E.
Thompson
,
J. U.
Kozyra
,
E. E.
Remsberg
,
L. L.
Gordley
,
J. M.
Russell
 III
, and
T.
Woods
, “
Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere
,”
Geophys. Res. Lett.
35
,
L05808
, (
2008
).
41.
P. E.
Dimotakis
, “
The mixing transition in turbulent flows
,”
J. Fluid Mech.
409
,
69
98
(
2000
).
42.
A. W.
Cook
and
P. E.
Dimotakis
, “
Transition stages of Rayleigh–Taylor instability between miscible fluids
,”
J. Fluid Mech.
457
,
410
411
(
2002
).
43.
D. J.
Jarvis
,
G.
Adamkiewicz
,
M.-E.
Heroux
,
R.
Rapp
, and
F. J.
Kelly
, “
Nitrogen dioxide
,” in
WHO Guidelines for Indoor Air Quality: Selected Pollutants
(
World Health Organization
,
Geneva
,
2010
), Chap. 5.
You do not currently have access to this content.