Modal decomposition techniques, flow field, and spectral analysis are employed to investigate the wake dynamics and destabilization mechanisms of a four-bladed marine propeller with or without a nozzle. Numerical simulations are conducted using the delayed detached eddy simulation model for the wake and the arbitrary mesh interface method for the blade rotation. The presence of the nozzle significantly reduces the wake's streamwise velocity, delays the wake destabilization, increases the wake length, and changes the morphologies of wake vortices. In particular, the hub vortex in the ducted propeller wake is broken down into chaotic turbulence by the perturbation of the backflow. Two modal decomposition methods, namely, proper orthogonal decomposition and dynamic mode decomposition, are used to decompose the vorticity magnitude in the rotor wake field. From modal analysis, the spatial scale of flow phenomena decreases with the increase in modal frequency. Underlying destabilization mechanisms in the wake correspond to some characteristic frequencies. The interaction of each sheet vortex with the previously shed tip (leakage) vortices occurs at blade passing frequency (BPF). The pairing of adjacent tip (leakage) vortices occurs at half-BPF. The long-wave instability of the hub vortex and the wake meandering are stochastic processes, each of which occurs at a frequency lower or equal to shaft frequency. These four destabilization mechanisms can approximately reconstruct the large-scale flow phenomena in the wake. Moreover, each sheet vortex's alternating connection and disconnection with the previously shed tip (leakage) vortices cause the short-wave instability of the tip (leakage) vortices and generate the secondary vortices. The radial expansion motion of large-scale helical vortices in the outer slipstream dominates the wake meandering phenomenon.

1.
Aaron
,
T.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
(
2018
).
2.
Ahmed
,
S.
,
Croaker
,
P.
, and
Doolan
,
C. J.
, “
On the instability mechanisms of ship propeller wakes
,”
Ocean Eng.
213
,
107609
(
2020
).
3.
Ashton
,
R.
,
Viola
,
F.
,
Camarri
,
S.
,
Gallaire
,
F.
, and
Iungo
,
G. V.
, “
Hub vortex instability within wind turbine wakes: Effects of wind turbulence, loading conditions, and blade aerodynamics
,”
Phys. Rev. Fluids
1
,
073603
(
2016
).
4.
Carrica
,
P. M.
,
Kim
,
Y.
, and
Martin
,
J. E.
, “
Near-surface self propulsion of a generic submarine in calm water and waves
,”
Ocean Eng.
183
,
87
105
(
2019
).
5.
Cenedese
,
A.
,
Accardo
,
L.
, and
Milone
,
R.
, “
Phase sampling in the analysis of a propeller wake
,”
Exp. Fluids
6
,
55
60
(
1988
).
6.
Chamorro
,
L. P.
,
Hill
,
C.
,
Morton
,
S.
,
Ellis
,
C.
,
Arndt
,
R. E. A.
, and
Sotiropoulos
,
F.
, “
On the interaction between a turbulent open channel flow and an axial-flow turbine
,”
J. Fluid Mech.
716
,
658
670
(
2013
).
7.
Chen
,
K. K.
,
Tu
,
J. H.
, and
Rowley
,
C. W.
, “
Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses
,”
J. Nonlinear Sci.
22
,
887
915
(
2012
).
8.
Clausen
,
M.
, and
Baum
,
U.
, “
Fast Fourier transforms for symmetric groups: Theory and implementation
,”
Math. Comput.
61
,
833
(
1993
).
9.
Cozijn
,
J.
, and
Hallmann
,
R.
, “
The wake flow behind azimuthing thrusters: Measurements in open water, under a plate and under a barge
,” in
ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
,
2012
.
10.
Cozijn
,
J. L.
,
Hallmann
,
R.
, and
Koop
,
A. H.
, “
Analysis of the velocities in the wake of an azimuthing thruster, using PIV measurements and CFD calculations
,” in
MTS DP Conference
,
2010
.
11.
Debnath
,
M.
,
Santoni
,
C.
,
Leonardi
,
S.
, and
Iungo
,
G. V.
, “
Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes
,”
Philos. Trans. R Soc. A
375
,
20160108
(
2017
).
12.
Desoer
,
C.
, and
Wang
,
Y. T.
, “
On the generalized Nyquist stability criterion
,” in
18th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes,
1979
.
13.
Di Felice
,
F.
,
Di Florio
,
D.
,
Felli
,
M.
, and
Romano
,
G.
, “
Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry
,”
J. Ship Res.
48
,
168
190
(
2004
).
14.
Di Mascio
,
A.
,
Muscari
,
R.
, and
Dubbioso
,
G.
, “
On the wake dynamics of a propeller operating in drift
,”
J. Fluid Mech.
754
,
263
307
(
2014
).
15.
Farrell
,
P. E.
, and
Maddison
,
J. R.
, “
Conservative interpolation between volume meshes by local Galerkin projection
,”
Comput. Methods Appl. Mech. Eng.
200
,
89
100
(
2011
).
16.
Felli
,
M.
, “
Underlying mechanisms of propeller wake interaction with a wing
,”
J. Fluid Mech.
908
,
A10
(
2021
).
17.
Felli
,
M.
,
Camussi
,
R.
, and
Di Felice
,
F.
, “
Mechanisms of evolution of the propeller wake in the transition and far fields
,”
J. Fluid Mech.
682
,
5
53
(
2011
).
18.
Felli
,
M.
,
Di Felice
,
F.
, and
Guj
,
G.
, “
Analysis of the propeller wake evolution by pressure and velocity phase measurements
,”
Exp. Fluids
41
,
441
451
(
2006
).
19.
Felli
,
M.
, and
Falchi
,
M.
, “
Propeller wake evolution mechanisms in oblique flow conditions
,”
J. Fluid Mech.
845
,
520
559
(
2018
).
20.
Foti
,
D.
,
Yang
,
X. L.
, and
Sotiropoulos
,
F.
, “
Similarity of wake meandering for different wind turbine designs for different scales
,”
J. Fluid Mech.
842
,
5
25
(
2018
).
21.
Go
,
J. S.
,
Yoon
,
H. S.
, and
Jung
,
J. H.
, “
Effects of a duct before a propeller on propulsion performance
,”
Ocean Eng.
136
,
54
66
(
2017
).
22.
Gong
,
J.
,
Ding
,
J. M.
, and
Wang
,
L. Z.
, “
Propeller-duct interaction on the wake dynamics of a ducted propeller
,”
Phys. Fluids
33
,
074102
(
2021
).
23.
Gong
,
J.
,
Guo
,
C. Y.
,
Zhao
,
D. G.
,
Wu
,
T. C.
, and
Song
,
K. W.
, “
A comparative des study of wake vortex evolution for ducted and non-ducted propellers
,”
Ocean Eng.
160
,
78
93
(
2018
).
24.
Guo
,
H.
,
Guo
,
C. Y.
,
Hu
,
J.
,
Lin
,
J. F.
, and
Zhong
,
X. H.
, “
Influence of jet flow on the hydrodynamic and noise performance of propeller
,”
Phys. Fluids
33
,
065123
(
2021
).
25.
Hamilton
,
N.
,
Tutkun
,
M.
, and
Cal
,
R. B.
, “
Wind turbine boundary layer arrays for Cartesian and staggered configurations: Part II. Low-dimensional representations via the proper orthogonal decomposition
,”
Wind Energy
18
,
297
315
(
2015
).
26.
Iungo
,
G. V.
,
Santoni-Ortiz
,
C.
,
Abkar
,
M.
,
Porté-Agel
,
F.
,
Rotea
,
M. A.
, and
Leonardi
,
S.
, “
Data-driven reduced order model for prediction of wind turbine wakes
,”
J. Phys: Conf. Ser.
625
,
012009
(
2015
).
27.
Iungo
,
G. V.
,
Viola
,
F.
,
Camarri
,
S.
,
Porté-Agel
,
F.
, and
Gallaire
,
F.
, “
Linear stability analysis of wind turbine wakes performed on wind tunnel measurements
,”
J. Fluid Mech.
737
,
499
526
(
2013
).
28.
Joukowski
,
N. E.
, “
Vortex theory of screw propeller
,”
Tr. Otd. Fiz. Nauk O-va Lyubit. Estestvoznan.
16
,
1
31
(
1912
).
29.
Jovanović
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
30.
Koop
,
A.
,
Cozijn
,
H.
,
Schrijvers
,
P.
, and
Vaz
,
G.
, “
Determining thruster-hull interaction for a drill-ship using CFD
,” in
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
2017
.
31.
Kumar
,
P.
, and
Mahesh
,
K.
, “
Large eddy simulation of propeller wake instabilities
,”
J. Fluid Mech.
814
,
361
396
(
2017
).
32.
Kutz
,
J. N.
,
Data-Driven Modeling and Scientific Computation: Methods for Complex Systems and Big Data
(
Oxford University Press
,
2013
).
33.
Kutz
,
J. N.
,
Brunton
,
S. L.
,
Brunton
,
B. W.
, and
Proctor
,
J. L.
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
SIAM
,
2016
).
34.
Levy
,
H.
, and
Forsdyke
,
A.
, “
The steady motion and stability of a helical vortex
,”
Proc. R. Soc. London, Ser. A
120
,
670
690
(
1928
).
35.
Li
,
H.
,
Huang
,
Q. G.
,
Pan
,
G.
, and
Dong
,
X. G.
, “
Wake instabilities of a pre-swirl stator pump-jet propulsor
,”
Phys. Fluids
33
,
085119
(
2021
).
36.
Liu
,
L. W.
,
Chen
,
M. X.
,
Yu
,
J. W.
,
Zhang
,
Z. G.
, and
Wang
,
X. Z.
, “
Full-scale simulation of self-propulsion for a free-running submarine
,”
Phys. Fluids
33
,
047103
(
2021
).
37.
Lumley
,
J. L.
,
Stochastic Tools in Turbulence
(
Academic Press
,
1970
).
38.
Maciel
,
P.
,
Koop
,
A.
, and
Vaz
,
G.
, “
Modelling thruster-hull interaction with CFD
,” in
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
2013
.
39.
Magionesi
,
F.
,
Dubbioso
,
G.
,
Muscari
,
R.
, and
Di Mascio
,
A.
, “
Modal analysis of the wake past a marine propeller
,”
J. Fluid Mech.
855
,
469
502
(
2018
).
40.
Mao
,
X.
, and
Sørensen
,
J. N.
, “
Far-wake meandering induced by atmospheric eddies in flow past a wind turbine
,”
J. Fluid Mech.
846
,
190
209
(
2018
).
41.
Medici
,
D.
, and
Alfredsson
,
P. H.
, “
Measurements behind model wind turbines: Further evidence of wake meandering
,”
Wind Energy
11
,
211
217
(
2008
).
42.
Muscari
,
R.
,
Di Mascio
,
A.
, and
Verzicco
,
R.
, “
Modeling of vortex dynamics in the wake of a marine propeller
,”
Comput. Fluids
73
,
65
79
(
2013
).
43.
Muscari
,
R.
,
Dubbioso
,
G.
, and
Di Mascio
,
A.
, “
Analysis of the flow field around a rudder in the wake of a simplified marine propeller
,”
J. Fluid Mech.
814
,
547
569
(
2017
).
44.
Ochi
,
F.
,
Fujisawa
,
T.
,
Ohmori
,
T.
, and
Kawamura
,
T.
, “
Simulation of propeller hub vortex flow
,” in
First International Symposium on Marine Propulsors SMP-09,
2009
.
45.
Okulov
,
V.
,
Naumov
,
I.
,
Mikkelsen
,
R.
,
Kabardin
,
I.
, and
Sørensen
,
J.
, “
A regular Strouhal number for large-scale instability in the far wake of a rotor
,”
J. Fluid Mech.
747
,
369
380
(
2014
).
46.
Okulov
,
V.
, and
Sørensen
,
J.
, “
Stability of helical tip vortices in rotor far wake
,”
J. Fluid Mech.
576
,
1
25
(
2007
).
47.
Oosterveld
,
M. W. C.
, “
Wake adapted ducted propellers
,” Doctoral thesis (
Delft University of Technology
,
Netherlands
,
1970
).
48.
Posa
,
A.
, and
Broglia
,
R.
, “
Flow over a hydrofoil at incidence immersed within the wake of a propeller
,”
Phys. Fluids
33
,
125108
(
2021
).
49.
Posa
,
A.
,
Broglia
,
R.
, and
Balaras
,
E.
, “
The wake structure of a propeller operating upstream of a hydrofoil
,”
J. Fluid Mech.
904
,
A12
(
2020
).
50.
Posa
,
A.
,
Broglia
,
R.
,
Felli
,
M.
,
Falchi
,
M.
, and
Balaras
,
E.
, “
Characterization of the wake of a submarine propeller via large-eddy simulation
,”
Comput. Fluids
184
,
138
152
(
2019
).
51.
Qin
,
D. H.
,
Huang
,
Q. G.
,
Pan
,
G.
,
Han
,
P.
,
Luo
,
Y.
, and
Dong
,
X. G.
, “
Numerical simulation of vortex instabilities in the wake of a preswirl pumpjet propulsor
,”
Phys. Fluids
33
,
055119
(
2021
).
52.
Rempfer
,
D.
, and
Fasel
,
H.
, “
Evolution of three-dimensional coherent structures in a flat-plate boundary layer
,”
J. Fluid Mech.
260
,
351
375
(
1994
).
53.
Ricca
,
R.
, “
Effect of torsion on the motion of a helical vortex filament
,”
J. Fluid Mech.
273
,
241
259
(
1994
).
54.
Rowley
,
C. W.
, and
Dawson
,
S.
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
55.
Rowley
,
C. W.
,
Mezi
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
56.
Rumsey
,
C. L.
, “
Apparent transition behavior of widely-used turbulence models
,”
Int. J. Heat Fluid Flow
28
,
1460
1471
(
2007
).
57.
Sarmast
,
S.
,
Dadfar
,
R.
,
Mikkelsen
,
R. F.
,
Schlatter
,
P.
,
Ivanell
,
S.
,
Sørensen
,
J. N.
, and
Henningson
,
D. S.
, “
Mutual inductance instability of the tip vortices behind a wind turbine
,”
J. Fluid Mech.
755
,
705
731
(
2014
).
58.
Sarpkaya
,
T.
, “
On stationary and traveling vortex breakdowns
,”
J. Fluid Mech.
45
,
545
559
(
1971
).
59.
Schmid
,
P. J.
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
60.
Schmid
,
P. J.
,
Violato
,
D.
, and
Scarano
,
F.
, “
Decomposition of time-resolved tomographic PIV
,”
Exp. Fluids
52
,
1567
1579
(
2012
).
61.
Sirovich
,
L.
, “
Turbulence and the dynamics of coherent structures. I—Coherent structures. II—Symmetries and transformations. III—Dynamics and scaling
,”
Q. Appl. Math.
45
,
561
571
(
1987
).
62.
Smith
,
G.
,
Schlez
,
W.
,
Liddell
,
A.
,
Neubert
,
A.
, and
Pena
,
A.
, “
Advanced wake model for very closely spaced turbines
,” in
Proceedings of EWEC, Athens
,
2006
.
63.
Spalart
,
P.
, “
Trends in turbulence treatments
,” in
Fluids 2000 Conference and Exhibit, Fluid Dynamics and Co-Located Conferences
(
American Institute of Aeronautics and Astronautics
,
2000
).
64.
Spalart
,
P.
, and
Allmaras
,
S.
, “
A one-equation turbulence model for aerodynamic flows
,” in
30th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings
(
American Institute of Aeronautics and Astronautics
,
1992
).
65.
Spalart
,
P.
,
Shur
,
M.
,
Strelets
,
M.
, and
Travin
,
A.
, “
Sensitivity of landing-gear noise predictions by large-eddy simulation to numerics and resolution
,” in
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
American Institute of Aeronautics and Astronautics
,
2012
).
66.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
, “
A new version of detached-eddy simulation, resistant to ambiguous grid densities
,”
Theor. Comput. Fluid Dyn.
20
,
181
195
(
2006
).
67.
Statnikov
,
V.
,
Meinke
,
M.
, and
Schröder
,
W.
, “
Reduced-order analysis of buffet flow of space launchers
,”
J. Fluid Mech.
815
,
1
25
(
2017
).
68.
Stella
,
A.
,
Guj
,
G.
,
Di Felice
,
F.
, and
Elefante
,
M.
, “
Experimental investigation of propeller wake evolution by means of LDV and flow visualizations
,”
J. Ship Res.
44
,
155
169
(
2000
).
69.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
1
29
(
2017
).
70.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P. R.
, “
Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows
,” in
Advances in LES of Complex Flows
, edited by
R.
Friedrich
and
W.
Rodi
(
Springer
,
Netherlands
,
2002
), pp.
239
254
.
71.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
,
391
421
(
2014
).
72.
Viola
,
F.
,
Iungo
,
G.
,
Camarri
,
S.
,
Porté-Agel
,
F.
, and
Gallaire
,
F.
, “
Prediction of the hub vortex instability in a wind turbine wake: Stability analysis with eddy-viscosity models calibrated on wind tunnel data
,”
J. Fluid Mech.
750
,
R1
(
2014
).
73.
Viola
,
F.
,
Iungo
,
G. V.
,
Camarri
,
S.
,
Porté-Agel
,
F.
, and
Gallaire
,
F.
, “
Instability of wind turbine wakes immersed in the atmospheric boundary layer
,”
J. Phys.: Conf. Ser.
625
,
012034
(
2015
).
74.
Wall
,
M.
,
Rechtsteiner
,
A.
, and
Rocha
,
L.
,
A Practical Approach to Microarray Data Analysis
(
Springer
,
2003
), Vol.
5
.
75.
Walther
,
J. H.
,
Guénot
,
M.
,
Machefaux
,
E.
,
Rasmussen
,
J. T.
,
Chatelain
,
P.
,
Okulov
,
V. L.
,
Sørensen
,
J. N.
,
Bergdorf
,
M.
, and
Koumoutsakos
,
P.
, “
A numerical study of the stability of helical vortices using vortex methods
,”
J. Phys.: Conf. Ser.
75
,
012034
(
2007
).
76.
Wang
,
L. Z.
,
Guo
,
C. Y.
,
Xu
,
P.
, and
Su
,
Y. M.
, “
Analysis of the wake dynamics of a propeller operating before a rudder
,”
Ocean Eng.
188
,
106250
(
2019
).
77.
Wang
,
L. Z.
,
Martin
,
J. E.
,
Felli
,
M.
, and
Carrica
,
P. M.
, “
Experiments and CFD for the propeller wake of a generic submarine operating near the surface
,”
Ocean Eng.
206
,
107304
(
2020
).
78.
Wang
,
L. Z.
,
Wu
,
T. C.
,
Gong
,
J.
, and
Yang
,
Y. R.
, “
Numerical analysis of the wake dynamics of a propeller
,”
Phys. Fluids
33
,
095120
(
2021a
).
79.
Wang
,
L. Z.
,
Wu
,
T. C.
,
Gong
,
J.
, and
Yang
,
Y. R.
, “
Numerical simulation of the wake instabilities of a propeller
,”
Phys. Fluids
33
,
125125
(
2021b
).
80.
Widnall
,
S. E.
, “
The stability of a helical vortex filament
,”
J. Fluid Mech.
54
,
641
663
(
1972
).
81.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
Vorticity and Vortex Dynamics
(
Springer
,
Berlin, Heidelberg
,
2006
), p.
776
.
82.
Yang
,
X. L.
, and
Sotiropoulos
,
F.
, “
A review on the meandering of wind turbine wakes
,”
Energies
12
,
4725
(
2019
).
83.
Zhang
,
B.
,
Ding
,
C. H.
, and
Liang
,
C. L.
, “
High-order implicit large-eddy simulation of flow over a marine propeller
,”
Comput. Fluids
224
,
104967
(
2021
).
84.
Zhang
,
Q.
, and
Jaiman
,
R. K.
, “
Numerical analysis on the wake dynamics of a ducted propeller
,”
Ocean Eng.
171
,
202
224
(
2019
).
85.
Zhang
,
Q.
,
Ma
,
P. F.
, and
Liu
,
J.
, “
Investigation on the performance of a ducted propeller in oblique flow
,”
J. Offshore Mech. Arct. Eng.
142
,
011801
(
2018
).
86.
Zhang
,
W. P.
,
Ning
,
X. S.
,
Li
,
F. G.
,
Guo
,
H.
, and
Sun
,
S. L.
, “
Vibrations of simplified rudder induced by propeller wake
,”
Phys. Fluids
33
,
083618
(
2021
).
87.
Zhang
,
Y. N.
,
Liu
,
K. H.
,
Xian
,
H. Z.
, and
Du
,
X. Z.
, “
A review of methods for vortex identification in hydroturbines
,”
Renewable Sustainable Energy Rev.
81
,
1269
1285
(
2018
).
You do not currently have access to this content.