The paper presents a synthetic turbulence generator (STG) for the lattice Boltzmann method (LBM) at the interface of the Reynolds averaged Navier–Stokes (RANS) equations and the LBM large eddy simulation (LES). We first obtain the RANS velocity field from a finite volume solver at the interface. Then, we apply a numerical interpolation from the RANS velocity field to the LBM velocity field due to the different grid types of RANS and LBM. The STG method generates the velocity fluctuations, and the regularized LBM reconstructs the particle distribution functions at the interface. We perform a turbulent channel flow simulation at Reτ=180 with the STG at the inlet and the pressure-free boundary condition at the outlet. The velocity field is quantitatively compared with the periodic lattice Boltzmann based LES (LES-LBM) channel flow and the direct numerical simulation (DNS) channel flow. Both the adaptation length and time for the STG method are evaluated. Also, we compare the STG-LBM channel flow results with the existing LBM synthetic eddy method (SEM-LBM) results. Our numerical investigations show good agreement with the DNS and periodic LES-LBM channel flow within a short adaptation length. The adaptation time for the turbulent channel flow is quantitatively analyzed and matches the DNS around 1.5–3 domain flow-through time. Finally, we check the auto-correlation for the velocity components at different cross sections of the streamwise direction. The proposed STG-LBM is observed to be both fast and robust. The findings show good potential for the hybrid RANS/LES-LBM based solver on the aerodynamics simulations and a broad spectrum of engineering applications.

1.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations. I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
2.
P.
Spalart
and
S.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” AIAA Paper No. 1992-439,
1992
, p.
439
.
3.
F.
Menter
, “
Zonal two equation k–w turbulence models for aerodynamic flows
,” AIAA Paper No. 93-2906,
1993
, p.
2906
.
4.
X.
Wu
, “
Inflow turbulence generation methods
,”
Annu. Rev. Fluid Mech.
49
,
23
49
(
2017
).
5.
J.
Schlüter
,
H.
Pitsch
, and
P.
Moin
, “
Large-eddy simulation inflow conditions for coupling with Reynolds-averaged flow solvers
,”
AIAA J.
42
,
478
484
(
2004
).
6.
T. S.
Lund
,
X.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
258
(
1998
).
7.
P.
Spalart
,
M.
Strelets
, and
A.
Travin
, “
Direct numerical simulation of large-eddy-break-up devices in a boundary layer
,”
Int. J. Heat Fluid Flow
27
,
902
910
(
2006
).
8.
M.
Shur
,
P. R.
Spalart
,
M.
Strelets
, and
A.
Travin
, “
A rapid and accurate switch from RANS to LES in boundary layers using an overlap region
,”
Flow Turbul. Combust.
86
,
179
206
(
2011
).
9.
F.
Mathey
,
D.
Cokljat
,
J. P.
Bertoglio
, and
E.
Sergent
, “
Assessment of the vortex method for large eddy simulation inlet conditions,” Prog. Comput. Fluid Dyn.
Int. J.
6
,
58
67
(
2006
).
10.
N.
Jarrin
,
R.
Prosser
,
J.-C.
Uribe
,
S.
Benhamadouche
, and
D.
Laurence
, “
Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method
,”
Int. J. Heat Fluid Flow
30
,
435
442
(
2009
).
11.
A.
Skillen
,
A.
Revell
, and
T.
Craft
, “
Accuracy and efficiency improvements in synthetic eddy methods
,”
Int. J. Heat Fluid Flow
62
,
386
394
(
2016
).
12.
B.
Roidl
,
M.
Meinke
, and
W.
Schröder
, “
Zonal RANS-LES computation of transonic airfoil flow
,” AIAA Paper No. 2011-3974,
2011
, p.
3974
.
13.
B.
Roidl
,
M.
Meinke
, and
W.
Schröder
, “
A zonal RANS–LES method for compressible flows
,”
Comput. Fluids
67
,
1
15
(
2012
).
14.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
,
652
665
(
2003
).
15.
L.
Di Mare
,
M.
Klein
,
W.
Jones
, and
J.
Janicka
, “
Synthetic turbulence inflow conditions for large-eddy simulation
,”
Phys. Fluids
18
,
025107
(
2006
).
16.
L.
Davidson
, “
Using isotropic synthetic fluctuations as inlet boundary conditions for unsteady simulations
,” in
Advances and Applications in Fluid Mechanics
(
Citeseer
,
2007
).
17.
Z.-T.
Xie
and
I. P.
Castro
, “
Efficient generation of inflow conditions for large eddy simulation of street-scale flows
,”
Flow Turbul. Combust.
81
,
449
470
(
2008
).
18.
S.
Huang
,
Q.
Li
, and
J.
Wu
, “
A general inflow turbulence generator for large eddy simulation
,”
J. Wind Eng. Ind. Aerodyn.
98
,
600
617
(
2010
).
19.
M. L.
Shur
,
P. R.
Spalart
,
M. K.
Strelets
, and
A. K.
Travin
, “
Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems
,”
Flow Turbul. Combust.
93
,
63
92
(
2014
).
20.
S.
Succi
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
(
Oxford University Press
,
2001
).
21.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method
(
Springer International Publishing
,
2017
), Vol.
10
, pp.
978
983
.
22.
S.
Marié
,
D.
Ricot
, and
P.
Sagaut
, “
Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics
,”
J. Comput. Phys.
228
,
1056
1070
(
2009
).
23.
D.
Belardinelli
,
M.
Sbragaglia
,
L.
Biferale
,
M.
Gross
, and
F.
Varnik
, “
Fluctuating multicomponent lattice Boltzmann model
,”
Phys. Rev. E
91
,
023313
(
2015
).
24.
X.
Xue
,
L.
Biferale
,
M.
Sbragaglia
, and
F.
Toschi
, “
A lattice Boltzmann study on Brownian diffusion and friction of a particle in a confined multicomponent fluid
,”
J. Comput. Sci.
47
,
101113
(
2020
).
25.
X.
Xue
,
M.
Sbragaglia
,
L.
Biferale
, and
F.
Toschi
, “
Effects of thermal fluctuations in the fragmentation of a nanoligament
,”
Phys. Rev. E
98
,
012802
(
2018
).
26.
S.
Hou
,
J.
Sterling
,
S.
Chen
, and
G.
Doolen
, “
A lattice Boltzmann subgrid model for high Reynolds number flows
,” arXiv:comp-gas/9401004 (
1994
).
27.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Annu. Rev. Fluid Mech.
41
,
375
404
(
2009
).
28.
I. V.
Karlin
,
A.
Ferrante
, and
H. C.
Öttinger
, “
Perfect entropy functions of the lattice Boltzmann method
,”
Europhys. Lett.
47
,
182
(
1999
).
29.
P.
Lallemand
and
L.-S.
Luo
, “
Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability
,”
Phys. Rev. E
61
,
6546
(
2000
).
30.
C. M.
Teixeira
, “
Incorporating turbulence models into the lattice-Boltzmann method
,”
Int. J. Mod. Phys. C
9
,
1159
1175
(
1998
).
31.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
32.
X.
He
,
S.
Chen
, and
R.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
,”
J. Comput. Phys.
152
,
642
663
(
1999
).
33.
H.
Liu
,
A. J.
Valocchi
, and
Q.
Kang
, “
Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations
,”
Phys. Rev. E
85
,
046309
(
2012
).
34.
T.
Reis
and
T.
Phillips
, “
Lattice Boltzmann model for simulating immiscible two-phase flows
,”
J. Phys. A: Math. Theor.
40
,
4033
(
2007
).
35.
D.
Chiappini
,
M.
Sbragaglia
,
X.
Xue
, and
G.
Falcucci
, “
Hydrodynamic behavior of the pseudopotential lattice Boltzmann method for interfacial flows
,”
Phys. Rev. E
99
,
053305
(
2019
).
36.
D.
Chiappini
,
X.
Xue
,
G.
Falcucci
, and
M.
Sbragaglia
, “
Ligament break-up simulation through pseudo-potential lattice Boltzmann method
,”
AIP Conf. Proc.
1978
,
420003
(
2018
).
37.
Y.
Koda
and
F.-S.
Lien
, “
The lattice Boltzmann method implemented on the GPU to simulate the turbulent flow over a square cylinder confined in a channel
,”
Flow Turbul. Combust.
94
,
495
512
(
2015
).
38.
S.
Fan
,
M. C.
Santasmasas
,
X.-W.
Guo
,
C.
Yang
, and
A.
Revell
, “
Source term-based turbulent flow simulation on GPU with link-wise artificial compressibility method
,”
Int. J. Comput. Fluid Dyn.
35
,
549
561
(
2021
).
39.
E.
Buffa
,
J.
Jacob
, and
P.
Sagaut
, “
Lattice-Boltzmann-based large-eddy simulation of high-rise building aerodynamics with inlet turbulence reconstruction
,”
J. Wind Eng. Ind. Aerodyn.
212
,
104560
(
2021
).
40.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
,
046308
(
2002
).
41.
J.
Latt
, “
Hydrodynamic limit of lattice Boltzmann equations
,” Ph.D. thesis (
University of Geneve
,
2007
).
42.
L.
Davidson
 et al.,
Fluid Mechanics, Turbulent Flow and Turbulence Modeling
(
Chalmers University of Technology
,
Goteborg, Sweden
,
2018
).
43.
R. H.
Kraichnan
, “
Diffusion by a random velocity field
,”
Phys. Fluids
13
,
22
31
(
1970
).
44.
D. C.
Wilcox
, “
Reassessment of the scale-determining equation
,”
AIAA J.
26
,
1299
1310
(
1988
).
45.
J.
Latt
,
B.
Chopard
,
O.
Malaspinas
,
M.
Deville
, and
A.
Michler
, “
Straight velocity boundaries in the lattice Boltzmann method
,”
Phys. Rev. E
77
,
056703
(
2008
).
46.
Q.
Zou
and
X.
He
, “
On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
,”
Phys. Fluids
9
,
1591
1598
(
1997
).
47.
M.
Carlsson
,
L.
Davidson
,
S.-H.
Peng
, and
S.
Arvidson
, “
Investigation of turbulence injection methods in compressible flow solvers in large eddy simulation
,” AIAA Paper No. 2022-0483,
2022
, p.
0483
.
48.
L.
Davidson
,
pyCALC-RANS: A 2D Python Code for RANS
(
Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences
,
Chalmers University of Technology
,
Gothenburg
,
2021
).
49.
Y.
Guo
,
L.
Kleiser
, and
N.
Adams
, “
A comparison study of an improved temporal DNS and spatial DNS of compressible boundary layer transition
,” AIAA Paper No. 94-2371,
1994
, p.
2371
.
50.
N. A.
Adams
, “
Direct numerical simulation of turbulent compression ramp flow
,”
Theor. Comput. Fluid Dyn.
12
,
109
129
(
1998
).
51.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Re τ = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
52.
B.
Favier
,
F.
Godeferd
, and
C.
Cambon
, “
On space and time correlations of isotropic and rotating turbulence
,”
Phys. Fluids
22
,
015101
(
2010
).
You do not currently have access to this content.