Increasing the speed of drilling operations is of commercial and military interest for transportation infrastructure as well as rapid installation of underground utilities in urban settings and over long distances. A significant challenge to increasing speed in horizontal directional drilling is pressure and flow rate management of drilling fluids circulating into and out of the borehole, removing solids cut free by the drill bit. The mixture of solids and drilling fluid results in a highly complex fluid dispersion, typically with a shear-thinning continuum. It is challenging to characterize the viscometric behavior of these dispersions, and such data are limited in the literature. It is increasingly important to understand and accurately model the viscosity of these dispersions since high drilling speeds increase the drilling fluid flow rate, approaching the pressure limits that borehole walls can withstand before failure. In this work, we characterize the viscometric properties of a drill test and model drilling fluid dispersion in a custom-built flow loop with solid concentrations up to 45 wt. %. The fluid viscosity is reported in terms of power-law parameters, which can be used to predict the pressure drop during real drilling conditions. We found a significant difference in the viscometric response between the drill test and model drilling fluid dispersions. The Shields parameter can capture the influence of solids settling on the measurable pressure losses. An important conclusion is that even model drilling fluid dispersions prepared with geotechnical data from a drill site may have significantly different viscometric characteristics than those relevant during a drilling operation.

1.
H. R.
Motahhari
,
G.
Hareland
,
R.
Nygaard
, and
B.
Bond
, “
Method of optimizing motor and bit performance for maximum ROP
,”
J. Can. Pet. Technol.
48
(
6
),
44
(
2009
).
2.
G.
Lang
and
D.
Pfeff
,
Direct Pipe® as Alternative to HDD in Permeable Soil Conditions
(
ASME
,
Calgary
,
2014
).
3.
A.
Ansari
,
S.
Sowaidi
, and
K.
Yoshimoto
,
Case Study: Drilling the Longest and Fastest Surface Hole Section in United Arab Emirates U.A.E.
(
SPE
,
Mumbai
,
2017
).
4.
D.
Willoughby
,
Horizontal Directional Drilling: Utility and Pipeline Applications
(
McGraw-Hill
,
New York
,
2005
).
5.
R.
Miles
,
A.
Gough
, and
B.
Silverthorne
,
The Northampton Mole Project—A Case Study in the Application of Freight Pipelines in an Urban Environment
(
ISUFT
,
Arlington
,
2016
).
6.
A.
Hojjati
,
I.
Jefferson
,
N.
Metje
, and
C. D. F.
Rogers
, “
Sustainability assessment for urban underground utility infrastructure projects
,”
Proc. Inst. Civil Eng.: Eng. Sustainability
171
,
68
(
2018
).
7.
S.
Deng
,
C.
Kang
,
A.
Bayat
,
E.
Kuru
,
M.
Osbak
,
K.
Barr
, and
C.
Trovato
, “
Rheological properties of clay-based drilling fluids and evaluation of their hole-cleaning performances in horizontal directional drilling
,”
J. Pipeline Syst. Eng. Pract.
11
,
04020031
(
2020
).
8.
D. C.
Bogue
and
A. B.
Metzner
, “
Velocity profiles in turbulent pipe flow
,”
Ind. Eng. Chem. Fundam.
2
,
143
(
1963
).
9.
A. C.
Barbati
,
J.
Desroches
,
A.
Robisson
, and
G. H.
McKinley
, “
Complex fluids and hydraulic fracturing
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
415
(
2016
).
10.
L.
Haitao
, “
Experimental and numerical investigation of stability of horizontal boreholes during horizontal directional drilling
,” Doctoral dissertation (
Queen's University
,
2018
).
11.
A.
Rostami
, “
Prediction and evaluation of annular pressure in horizontal directional drilling
,” Doctoral dissertation (
University of Alberta
,
2017
).
12.
E. N.
Allouche
,
S. T.
Ariaratnam
, and
J. S.
Lueke
, “
Horizontal directional drilling: Profile of an emerging industry
,”
J. Constr. Eng. Manage.
126
,
68
(
2000
).
13.
L.
Kong
,
Y.
Wang
,
B.
Wu
, and
Z.
Wang
, “
Simulation and experimental study on cuttings-carrying for reverse circulation horizontal directional drilling with dual drill pipes
,”
Adv. Civil Eng.
2019
,
6262308
.
14.
Y.-J.
Kim
,
N.-S.
Woo
,
Y.-K.
Hwang
,
J.-H.
Kim
, and
S.-M.
Han
, “
Transport of small cuttings in solid-liquid flow with inclined slim hole annulus
,”
J. Mech. Sci. Technol.
28
,
115
(
2014
).
15.
J. J.
Stickel
,
J. S.
Knutsen
,
M. W.
Liberatore
,
W.
Luu
,
D. W.
Bousfield
,
D. J.
Klingenberg
,
C. T.
Scott
,
T. W.
Root
,
M. R.
Ehrhardt
, and
T. O.
Monz
, “
Rheology measurements of a biomass slurry: An inter-laboratory study
,”
Rheol. Acta
48
,
1005
(
2009
).
16.
M. F.
Edwards
and
R.
Smith
, “
The turbulent flow of non-Newtonian fluids in the absence of anomalous wall effects
,”
J. Non-Newtonian Fluid Mech.
7
,
77
(
1980
).
17.
D. W.
Dodge
and
A. B.
Metzner
, “
Turbulent flow of non-Newtonian systems
,”
AIChE J.
5
,
189
(
1959
).
18.
A. P.
Szilas
,
E.
Bobok
, and
L.
Navratil
, “
Determination of turbulent pressure loss of non-Newtonian oil flow in rough pipes
,”
Rheol. Acta
20
,
487
(
1981
).
19.
K.
Founargiotakis
,
V. C.
Kelessidis
, and
R.
Maglione
, “
Laminar, transitional and turbulent flow of Herschel–Bulkley fluids in concentric annulus
,”
Can. J. Chem. Eng.
86
,
676
(
2008
).
20.
L. C. F.
Andrade
,
J. A.
Pentronílio
,
C.
Maneschy
, and
D.
Cruz
, “
The Carreau–Yasuda fluids a skin friction equation for turbulent flow in pipes and Kolmogorov dissipative scales
,”
J. Braz. Soc. Mech. Sci. Eng.
29
,
162
(
2007
).
21.
N. I.
Heywood
and
D. C.-H.
Cheng
, “
Comparison of methods for predicting head loss in turbulent pipe flow of non-Newtonian fluids
,”
Trans. Inst. Meas. Control
6
,
33
(
1984
).
22.
P.
Gao
and
J.-J.
Zhang
, “
New assessment of friction factor correlations for power law fluids in turbulent pipe flow: A statistical approach
,”
J. Cent. South Univ. Technol.
14
,
77
(
2007
).
23.
M. P.
Escudier
and
F.
Presti
, “
Pipe flow of a thixotropic liquid
,”
J. Non-Newtonian Fluid Mech.
62
,
291
(
1996
).
24.
T. K.
Tuoc
, “
The instantaneous wall viscosity in pipe flow of power law fluids: Case study for a theory of turbulence in time-independent non-Newtonian fluids
,” e-print arXiv:0912.5249 (
2009
).
25.
B.
Werner
,
V.
Myrseth
, and
A.
Saasen
, “
Viscoelastic properties of drilling fluids and their influence on cuttings transport
,”
J. Pet. Sci. Eng.
156
,
845
(
2017
).
26.
V. W.
Ostwald
, “
Ueber die Geschwindigkeitsfunktion der Viskosität disperser Systeme. I
,”
Kolloid-Z.
36
,
99
(
1925
).
27.
A.
Waele
, “
Viscometry and plastometry,
J. Oil Color Chem. Assoc.
6
,
33
(
1923
).
28.
C.
Carlsson
,
E.
Alenius
, and
L.
Fuchs
, “
Swirl switching in turbulent flow through 90° pipe bends
,”
Phys. Fluids
27
,
085112
(
2015
).
29.
A.
Ono
,
N.
Kimura
,
H.
Kamide
, and
A.
Tobita
, “
Influence of elbow curvature on flow structure at elbow outlet under high Reynolds number condition
,”
Nucl. Eng. Des.
241
,
4409
(
2011
).
30.
H.
Takamura
,
S.
Ebara
,
H.
Hashizume
,
K.
Aizawa
, and
H.
Yamano
, “
Flow visualization and frequency characteristics of velocity fluctuations of complex turbulent flow in a short elbow piping under high Reynolds number condition
,”
J. Fluids Eng.
134
,
101201
(
2012
).
31.
S.
Wang
,
C.
Ren
,
Y.
Sun
,
X.
Yang
, and
J.
Tu
, “
A study on the instantaneous turbulent flow field in a 90-degree elbow pipe with circular section
,”
Sci. Technol. Nucl. Install.
2016
,
5265748
.
32.
G.
Homicz
, “
Computational fluid dynamic simulations of pipe elbow flow
,” Document No. SAND2004-3467,
2004
.
33.
F. A.
Holland
and
R.
Bragg
,
Flow of Incompressible Non-Newtonian Fluids in Pipes
(
Elsevier
,
1995
).
34.
R. B.
Bird
,
W. E.
Stewart
,
E. N.
Lightfoot
, and
D. J.
Klingenberg
,
Introductory Transport Phenomena
(
Wiley Global Education
,
2015
).
35.
N.
El-Emam
,
A. H.
Kamel
,
M.
El-Shafei
, and
A.
El-Batrawy
, “
New equation calculates friction factor for turbulent flow of non-Newtonian fluids
,”
Oil Gas J.
101
,
74
(
2003
).
36.
J. R.
Zhang
,
M. D.
Xu
,
G. E.
Christidis
, and
C. H.
Zhou
, “
Clay minerals in drilling fluids: Functions and challenges
,”
Clay Miner.
55
(
1
),
1
11
(
2020
).
37.
P. F.
Luckham
and
S.
Rossi
, “
The colloidal and rheological properties of bentonite suspensions
,”
Adv. Colloid Interface Sci.
82
,
43
(
1999
).
38.
P. V.
Skudarnov
,
C. X.
Lin
, and
M. A.
Ebadian
, “
Double-species slurry flow in a horizontal pipeline
,”
J. Fluids Eng.
126
,
125
(
2004
).
39.
G.
Christidis
, “
Physical and chemical properties of some bentonite deposits of Kimolos Island, Greece
,”
Appl. Clay Sci.
13
,
79
(
1998
).
40.
Y.
Ignatenko
,
O.
Bocharov
, and
R.
May
, “
On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid
,”
J. Phys: Conf. Ser.
894
,
012037
(
2017
).
41.
R.
Maglione
,
G.
Gallino
,
G.
Robotti
,
R.
Romagnoli
, and
R.
Rommetveit
,
A Drilling Well as Viscometer: Studying the Effects of Well Pressure and Temperature on the Rheology of the Drilling Fluids
(
SPE
,
Milan
,
1996
).
42.
A.
Karimi Vajargah
and
E.
van Oort
, “
Determination of drilling fluid rheology under downhole conditions by using real-time distributed pressure data
,”
J. Nat. Gas Sci. Eng.
24
,
400
(
2015
).
43.
S.
Gul
and
E.
van Oort
,
Automated Surface Measurements of Drilling Fluid Properties: Field Application in the Permian Basin
(
SPE
,
Denver
,
2020
).
44.
A. A.
Pilehvari
,
J. J.
Azar
, and
S. A.
Shirazi
, “
State-of-the-art cuttings transport in horizontal wellbores
,”
Paper No. SPE-57716-PA
,
1999
.
45.
J. J.
Azar
and
R. A.
Sanchez
, “
Important issues in cuttings transport for drilling directional wells
,”
Latin American and Caribbean Petroleum Engineering Conference, Rio de Janeiro, Brazil
, 30 August-3 September 1997 (SPE,
1997
).
46.
M.
Duan
,
S.
Miska
,
M.
Yu
,
N.
Takach
,
R.
Ahmed
, and
C.
Zettner
,
Transport of Small Cuttings in Extended Reach Drilling
(
SPE
,
Beijing
,
2006
).
47.
A.
Ramadan
,
P.
Skalle
,
S. T.
Johansen
,
J.
Svein
, and
A.
Saasen
, “
Mechanistic model for cuttings removal from solid bed in inclined channels
,”
J. Pet. Sci. Eng.
30
,
129
(
2001
).
48.
M.
Bizhani
and
E.
Kuru
, “
Critical review of mechanistic and empirical (semimechanistic) models for particle removal from sandbed deposits in horizontal annuli with water
,”
SPE J.
23
,
237
(
2018
).
49.
C.
Pedrosa
,
A.
Saasen
, and
J. D.
Ytrehus
, “
Fundamentals and physical principles for drilled cuttings transport—Cuttings bed sedimentation and erosion
,”
Energies
14
,
545
(
2021
).
50.
J. D.
Ytrehus
,
A.
Taghipour
,
S.
Sayindla
,
B.
Lund
,
B.
Werner
, and
A.
Saasen
,
Full Scale Flow Loop Experiments of Hole Cleaning Performances of Drilling Fluids
(
ASME
,
Newfoundland
,
2015
).
51.
E. M.
Ozbayoglu
and
M.
Sorgun
, “
Frictional pressure loss estimation of non-Newtonian fluids in realistic annulus with pipe rotation
,”
J. Can. Pet. Technol.
49
,
57
(
2010
).
52.
N.
Pimenova
and
T.
Hanley
, “
Measurement of rheological properties of corn stover suspension
,”
Appl. Biochem. Biotechnol.
106
,
383
(
2003
).

Supplementary Material

You do not currently have access to this content.