In liquid-based material processing, hydrodynamic forces are known to produce severe bending deformations of two-dimensional (2D) materials such as graphene. The non-linear rotational and deformation dynamics of these atomically thin sheets is extremely sensitive to hydrodynamic particle-particle interactions. To investigate this problem, we developed a computational model of the flow dynamics of elastic sheets suspended in a linear shear flow, solving the full fluid-solid coupling problem in the two-dimensional, slender-body, Stokes flow regime. Both single and pairs of sheets in close proximity are analyzed. Despite the model being two-dimensional, the critical non-dimensional shear rate yielding single-particle buckling is comparable in order of magnitude to that reported for fully three-dimensional, disk-like sheets. For pairs of interacting sheets, hydrodynamic interactions lead either to parallel sliding or bending, depending on the value of an elasto-viscous number based on particle length. For sufficiently low bending rigidity or large shear rates, large deformations of initially stacked sheets lead to sheet reattachment after separation, unlike for the rigid case. A peeling-like dynamics where lubrication provides a viscous bonding force is observed for sheet pairs when one of the two sheets is more rigid than the other. Practical implications for graphene processing and exfoliation are discussed.

1.
K.
El Haddad
,
C.
Aumnate
,
C.
Saengow
,
M.
Kanso
,
S.
Coombs
, and
A.
Giacomin
, “
Complex viscosity of graphene suspensions
,”
Phys. Fluids
33
,
093109
(
2021
).
2.
C.
Kamal
,
S.
Gravelle
, and
L.
Botto
, “
Alignment of a flexible platelike particle in shear flow: Effect of surface slip and edges
,”
Phys. Rev. Fluids
6
,
084102
(
2021
).
3.
K. S.
Silmore
,
M.
Strano
, and
J. W.
Swan
, “
Thermally fluctuating, semiflexible sheets in simple shear flow
,”
Soft Matter
18
,
768
(
2022
).
4.
Y.
Yu
and
M. D.
Graham
, “
Wrinkling and multiplicity in the dynamics of deformable sheets in uniaxial extensional flow
,”
Phys. Rev. Fluids
7
(
2
)
023601
(
2022
).
5.
B.
Derby
and
N.
Reis
, “
Inkjet printing of highly loaded particulate suspensions
,”
MRS Bull.
28
,
815
818
(
2003
).
6.
Q.
Mei
and
Z.
Zhang
, “
Photoluminescent graphene oxide ink to print sensors onto microporous membranes for versatile visualization bioassays
,”
Angew. Chem., Int. Ed.
51
,
5602
(
2012
).
7.
C.
Grotta
, “
3d printing of transition metal dichalcogenides
,” Ph.D. thesis (Imperial College London,
2018
); available at https://spiral.imperial.ac.uk/handle/10044/1/67288.
8.
J. C.
Spear
,
B. W.
Ewers
, and
J. D.
Batteas
, “
2D-nanomaterials for controlling friction and wear at interfaces
,”
Nano Today
10
,
301
314
(
2015
).
9.
M.
Zhang
,
Y.
Ma
,
Y.
Zhu
,
J.
Che
, and
Y.
Xiao
, “
Two-dimensional transparent hydrophobic coating based on liquid-phase exfoliated graphene fluoride
,”
Carbon
63
,
149
156
(
2013
).
10.
X.
Fu
and
S.
Qutubuddin
, “
Polymer–clay nanocomposites: Exfoliation of organophilic montmorillonite nanolayers in polystyrene
,”
Polymers
42
,
807
813
(
2001
).
11.
S.
Barwich
,
J. N.
Coleman
, and
M. E.
Möbius
, “
Yielding and flow of highly concentrated, few-layer graphene suspensions
,”
Soft Matter
11
,
3159
3164
(
2015
).
12.
N. K.
Borse
and
M. R.
Kamal
, “
Estimation of stresses required for exfoliation of clay particles in polymer nanocomposites
,”
Polym. Eng. Sci.
49
,
641
650
(
2009
).
13.
K. R.
Paton
,
E.
Varrla
,
C.
Backes
,
R. J.
Smith
,
U.
Khan
,
A.
O'Neill
,
C.
Boland
,
M.
Lotya
,
O. M.
Istrate
,
P.
King
 et al., “
Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids
,”
Nat. Mater.
13
,
624
630
(
2014
).
14.
K. S.
Silmore
,
M. S.
Strano
, and
J. W.
Swan
, “
Buckling, crumpling, and tumbling of semiflexible sheets in simple shear flow
,”
Soft Matter
17
,
4707
4718
(
2021
).
15.
Y.
Yu
and
M. D.
Graham
, “
Coil–stretch-like transition of elastic sheets in extensional flows
,”
Soft Matter
17
(
3
),
543
553
(
2021
).
16.
S.
Gravelle
,
C.
Kamal
, and
L.
Botto
, “
Violations of Jeffrey's theory in the dynamics of nanographene in shear flow
,”
Phys. Rev. Fluids
6
,
034303
(
2021
).
17.
Y.
Xu
and
M. J.
Green
, “
Brownian dynamics simulations of nanosheet solutions under shear
,”
J. Chem. Phys
141
,
024905
(
2014
).
18.
S. B.
Babu
and
H.
Stark
, “
Dynamics of semi-flexible tethered sheets
,”
Eur. Phys. J. E
34
,
136
(
2011
).
19.
O.
Du Roure
,
A.
Lindner
,
E. N.
Nazockdast
, and
M. J.
Shelley
, “
Dynamics of flexible fibers in viscous flows and fluids
,”
Annu. Rev. Fluid Mech.
51
,
539
572
(
2019
).
20.
L. J.
Fauci
and
C. S.
Peskin
, “
A computational model of aquatic animal locomotion
,”
J. Comput. Phys.
77
,
85
108
(
1988
).
21.
J.
Simons
,
L.
Fauci
, and
R.
Cortez
, “
A fully three-dimensional model of the interaction of driven elastic filaments in a Stokes flow with applications to sperm motility
,”
J. Biomech.
48
,
1639
1651
(
2015
).
22.
A.-K.
Tornberg
and
M. J.
Shelley
, “
Simulating the dynamics and interactions of flexible fibers in stokes flows
,”
J. Comput. Phys.
196
,
8
40
(
2004
).
23.
L. H.
Li
,
Y.
Chen
,
G.
Behan
,
H.
Zhang
,
M.
Petravic
, and
A. M.
Glushenkov
, “
Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling
,”
J. Mater. Chem.
21
,
11862
11866
(
2011
).
24.
V.
Nicolosi
,
M.
Chhowalla
,
M. G.
Kanatzidis
,
M. S.
Strano
, and
J. N.
Coleman
, “
Liquid exfoliation of layered materials
,”
Science
340
,
1226419
(
2013
).
25.
J.
Stafford
,
N.
Uzo
,
U.
Farooq
,
S.
Favero
,
S.
Wang
,
H.-H.
Chen
,
A.
L'Hermitte
,
C.
Petit
, and
O. K.
Matar
, “
Real-time monitoring and hydrodynamic scaling of shear exfoliated graphene
,”
2D Mater.
8
,
025029
(
2021
).
26.
C.
Kamal
,
S.
Gravelle
, and
L.
Botto
, “
Effect of hydrodynamic slip on the rotational dynamics of a thin Brownian platelet in shear flow
,”
J. Fluid Mech.
919
,
A1
(
2021
).
27.
C.
Kamal
,
S.
Gravelle
, and
L.
Botto
, “
Hydrodynamic slip can align thin nanoplatelets in shear flow
,”
Nat. Commun.
11
,
1
10
(
2020
).
28.
D. J.
Smith
, “
A boundary element regularized Stokeslet method applied to cilia-and flagella-driven flow
,”
Proc. R. Soc., A
465
,
3605
3626
(
2009
).
29.
S. D.
Olson
and
L. J.
Fauci
, “
Hydrodynamic interactions of sheets vs filaments: Synchronization, attraction, and alignment
,”
Phys. Fluids
27
,
121901
(
2015
).
30.
T. D.
Montenegro-Johnson
,
L.
Koens
, and
E.
Lauga
, “
Microscale flow dynamics of ribbons and sheets
,”
Soft Matter
13
,
546
553
(
2017
).
31.
G.
Batchelor
, “
Slender-body theory for particles of arbitrary cross-section in stokes flow
,”
J. Fluid Mech.
44
,
419
440
(
1970
).
32.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
1992
).
33.
R.
Cortez
, “
The method of regularized stokeslets
,”
SIAM J. Sci. Comput.
23
,
1204
1225
(
2001
).
34.
V.
Singh
,
D. L.
Koch
,
G.
Subramanian
, and
A. D.
Stroock
, “
Rotational motion of a thin axisymmetric disk in a low Reynolds number linear flow
,”
Phys. Fluids
26
,
033303
(
2014
).
35.
G.
Salussolia
,
E.
Barbieri
,
N. M.
Pugno
, and
L.
Botto
, “
Micromechanics of liquid-phase exfoliation of a layered 2D material: A hydrodynamic peeling model
,”
J. Mech. Phys. Solids
134
,
103764
(
2020
).
36.
S.
Gravelle
,
C.
Kamal
, and
L.
Botto
, “
Liquid exfoliation of multilayer graphene in sheared solvents: A molecular dynamics investigation
,”
J. Chem. Phys.
152
,
104701
(
2020
).
37.
J. M.
Stockie
and
S. I.
Green
, “
Simulating the motion of flexible pulp fibres using the immersed boundary method
,”
J. Comput. Phys.
147
,
147
165
(
1998
).
38.
E.
Guazzelli
and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University Press
,
2011
), Vol.
45
.
39.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Courier Corporation
,
2013
).
40.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
, “
Measurement of the elastic properties and intrinsic strength of monolayer graphene
,”
Science
321
,
385
388
(
2008
).
41.
L. E.
Becker
and
M. J.
Shelley
, “
Instability of elastic filaments in shear flow yields first-normal-stress differences
,”
Phys. Rev. Lett.
87
,
198301
(
2001
).
42.
O.
Forgacs
and
S.
Mason
, “
Particle motions in sheared suspensions: X. orbits of flexible threadlike particles
,”
J. Colloid Sci.
14
,
473
491
(
1959
).
43.
N.
Quennouz
,
M.
Shelley
,
O.
du Roure
, and
A.
Lindner
, “
Transport and buckling dynamics of an elastic fibre in a viscous cellular flow
,”
J. Fluid Mech.
769
,
387
402
(
2015
).
44.
P.
Lingard
and
R.
Whitmore
, “
The deformation of disc-shaped particles by a shearing fluid with application to the red blood cell
,”
J. Colloid Interface Sci.
49
,
119
127
(
1974
).
45.
K.
White
,
S.
Hawkins
,
M.
Miyamoto
,
A.
Takahara
, and
H.-J.
Sue
, “
Effects of aspect ratio and concentration on rheology of epoxy suspensions containing model plate-like nanoparticles
,”
Phys. Fluids
27
,
123306
(
2015
).
46.
C.
Dhong
and
J.
Fréchette
, “
Peeling flexible beams in viscous fluids: Rigidity and extensional compliance
,”
J. Appl. Phys.
121
,
044906
(
2017
).
47.
B.
Chakrabarti
,
Y.
Liu
,
J.
LaGrone
,
R.
Cortez
,
L.
Fauci
,
O.
du Roure
,
D.
Saintillan
, and
A.
Lindner
, “
Flexible filaments buckle into helicoidal shapes in strong compressional flows
,”
Nat. Phys.
16
,
689
694
(
2020
).
48.
X.
Li
,
X.
Hao
,
M.
Zhao
,
Y.
Wu
,
J.
Yang
,
Y.
Tian
, and
G.
Qian
, “
Exfoliation of hexagonal boron nitride by molten hydroxides
,”
Adv. Mater.
25
,
2200
2204
(
2013
).
49.
D.
Xia
,
Q.
Xue
,
J.
Xie
,
H.
Chen
,
C.
Lv
,
F.
Besenbacher
, and
M.
Dong
, “
Fabrication of carbon nanoscrolls from monolayer graphene
,”
Small
6
,
2010
2019
(
2010
).
50.
X.
Chen
,
J. F.
Dobson
, and
C. L.
Raston
, “
Vortex fluidic exfoliation of graphite and boron nitride
,”
Chem. Commun.
48
,
3703
3705
(
2012
).
51.
V.
Sresht
,
A. A.
Padua
, and
D.
Blankschtein
, “
Liquid-phase exfoliation of phosphorene: Design rules from molecular dynamics simulations
,”
ACS Nano
9
,
8255
8268
(
2015
).
52.
R. C.
Sinclair
,
J. L.
Suter
, and
P. V.
Coveney
, “
Graphene–graphene interactions: Friction, superlubricity, and exfoliation
,”
Adv. Mater.
30
,
1705791
(
2018
).
53.
L.
Botto
, “
Towards nanomechanical models of liquid-phase exfoliation of layered 2D nanomaterials: Analysis of a π-peel model
,”
Front. Mater.
6
,
302
(
2019
).
54.
G.
Santagiuliana
,
O. T.
Picot
,
M.
Crespo
,
H.
Porwal
,
H.
Zhang
,
Y.
Li
,
L.
Rubini
,
S.
Colonna
,
A.
Fina
,
E.
Barbieri
 et al., “
Breaking the nanoparticle loading–dispersion dichotomy in polymer nanocomposites with the art of croissant-making
,”
ACS Nano
12
,
9040
9050
(
2018
).
55.
X.
Li
,
L.
Tao
,
Z.
Chen
,
H.
Fang
,
X.
Li
,
X.
Wang
,
J.-B.
Xu
, and
H.
Zhu
, “
Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics
,”
Appl. Phys. Rev.
4
,
021306
(
2017
).
56.
F.
Zeng
,
Y.
Kuang
,
G.
Liu
,
R.
Liu
,
Z.
Huang
,
C.
Fu
, and
H.
Zhou
, “
Supercapacitors based on high-quality graphene scrolls
,”
Nanoscale
4
,
3997
4001
(
2012
).
57.
G. M.
Choi
,
M.
Park
,
Y. H.
Shim
,
S. Y.
Kim
, and
H. S.
Lee
, “
Mass production of 2D manifolds of graphene oxide by shear flow
,”
Adv. Funct. Mater.
32
,
2107694
(
2022
).
58.
A. H. M.
Al-Antaki
,
X.
Luo
,
T. M.
Alharbi
,
D. P.
Harvey
,
S.
Pye
,
J.
Zou
,
W.
Lawrance
, and
C. L.
Raston
, “
Inverted vortex fluidic exfoliation and scrolling of hexagonal-boron nitride
,”
RSC Adv.
9
,
22074
22079
(
2019
).
59.
S.
Biccai
,
S.
Barwich
,
D.
Boland
,
A.
Harvey
,
D.
Hanlon
,
N.
McEvoy
, and
J. N.
Coleman
, “
Exfoliation of 2D materials by high shear mixing
,”
2D Mater.
6
,
015008
(
2018
).
60.
Y.
Xie
,
F.
Wang
,
E.
Puscheck
, and
D.
Rappolee
, “
Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/Jun kinase in preimplantation embryos
,”
Mol. Reprod. Dev.
74
,
1287
1294
(
2007
).
61.
B.
Chakrabarti
,
Y.
Liu
,
O.
Du Roure
,
A.
Lindner
, and
D.
Saintillan
, “
Signatures of elastoviscous buckling in the dilute rheology of stiff polymers
,”
J. Fluid Mech.
919
,
A12
(
2021
).
62.
B.
Tang
,
E.
Gao
,
Z.
Xiong
,
B.
Dang
,
Z.
Xu
, and
X.
Wang
, “
Transition of graphene oxide from nanomembrane to nanoscroll mediated by organic solvent in dispersion
,”
Chem. Mater.
30
,
5951
5960
(
2018
).
63.
M.
Trushin
and
A. C.
Neto
, “
Stability of a rolled-up conformation state for two-dimensional materials in aqueous solutions
,”
Phys. Rev. Lett.
127
,
156101
(
2021
).
64.
Y. Y.
Huang
and
E. M.
Terentjev
, “
Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties
,”
Polymers
4
,
275
295
(
2012
).
65.
G.
Salussolia
, “
A numerical study of the flow dynamics of graphene sheets based on continuum simulations
,” Ph.D. thesis (
Queen Mary University of London
,
2019
).
You do not currently have access to this content.