Following the recent identification of a new category of thermovibrationally driven particle attractors in dilute fluid–particle systems [M. Lappa, “The patterning behaviour and accumulation of spherical particles in a vibrated non-isothermal liquid,” Phys. Fluids 26(9), 093301 (2014); M. Lappa, “On the formation and morphology of coherent particulate structures in non-isothermal enclosures subjected to rotating g-jitters,” Phys. Fluids 31(7), 073303 (2019); and M. Lappa and T. Burel, “Symmetry breaking phenomena in thermovibrationally driven particle accumulation structures,” Phys. Fluids 32(5), 053314 (2020)], some effort is provided here to develop an integrated framework able to encompass earlier discoveries and account for new effects in a single treatment. In particular, we examine the alterations (“corrugation”) that can be induced in the geometrically perfect particle structures pertaining to this class of phenomena as the percentage of dispersed solid mass is progressively increased. The related dynamics are explored within the framework of a two-way coupled model with respect to several parameters (solid mass load, density ratio, frequency, and amplitude of the imposed vibrations). Ensuing results are interpreted by separating instantaneous and time-averaged contributions and using some ideas borrowed from the companion theory of bifurcations. We show that the back influence of particles on the carrier flow can lead to a variety of possible paths of evolution. While in some cases the original attractee can be overshadowed by particle-induced turbulence, in other circumstances new aggregates with heretofore unseen morphology show up.

1.
D.
Schwabe
and
A. I.
Mizev
, “
Particles of different density in thermocapillary liquid bridges under the action of travelling and standing hydrothermal waves
,”
Eur. Phys. J.: Spec. Top.
192
,
13
27
(
2011
).
2.
M.
Gotoda
,
T.
Sano
,
T.
Kaneko
, and
I.
Ueno
, “
Evaluation of existence region and formation time of particle accumulation structure (PAS) in half-zone liquid bridge
,”
Eur. Phys. J.: Spec. Top.
224
,
299
(
2015
).
3.
D. E.
Melnikov
and
V.
Shevtsova
, “
Different types of Lagrangian coherent structures formed by solid particles in three-dimensional time-periodic flows
,”
Eur. Phys. J.: Spec. Top.
226
(
6
),
1239
1251
(
2017
).
4.
F. C.
Adams
and
R.
Watkins
, “
Vortices in circumstellar disks
,”
Astrophys. J.
451
,
314
327
(
1995
).
5.
M.
Lappa
, “
On the nature, formation and diversity of particulate coherent structures in microgravity conditions and their relevance to materials science and problems of astrophysical interest
,”
Geophys. Astrophys. Fluid Dyn.
110
(
4
),
348
386
(
2016
).
6.
Z.
Knez
,
M. K.
Hrnčič
, and
M.
Škerget
, “
Particle formation and product formulation using supercritical fluids
,”
Annu. Rev. Chem. Biomol. Eng.
6
,
379
407
(
2015
).
7.
T.
Wang
and
Z.
Xing
, “
A fluid-particle interaction method for blood flow with special emphasis on red blood cell aggregation
,”
Bio-Med. Mater. Eng.
24
,
2511
2517
(
2014
).
8.
M.
Lappa
, “
A theoretical and numerical multiscale framework for the analysis of pattern formation in protein crystal engineering
,”
J. Multiscale Comput. Eng.
9
(
2
),
149
174
(
2011
).
9.
E.
Saeedi
,
S.
Abbasi
,
K. F.
Bohringer
, and
B. A.
Parviz
, “
Molten-alloy driven self-assembly for nano and micro scale system integration
,”
Fluid Dyn. Mater. Process.
2
(
4
),
221
246
(
2006
).
10.
M. Z.
Saghir
and
A.
Mohamed
, “
Effectiveness in incorporating Brownian and thermophoresis effects in modelling convective flow of water-Al2O3 nanoparticles
,”
Int. J. Numer. Methods Heat Fluid Flow
28
(
1
),
47
63
(
2018
).
11.
M.
Aksouh
,
R.
Chemini
,
A.
Mataoui
, and
S.
Poncet
, “
Buoyancy-driven instabilities and particle deposition in a Taylor–Couette apparatus
,”
Int. Commun. Heat Mass Transfer
113
,
104518
(
2020
).
12.
R.
Bürger
and
W. L.
Wendland
, “
Sedimentation and suspension flows: Historical perspective and some recent developments
,”
J. Eng. Math.
41
,
101
116
(
2001
).
13.
J.-P.
Matas
,
J. F.
Morris
, and
É.
Guazzelli
, “
Transition to turbulence in particulate pipe flow
,”
Phys. Rev. Lett.
90
,
014501
(
2003
).
14.
I.
Lashgari
,
F.
Picanoa
, and
L.
Brandt
, “
Transition and self-sustained turbulence in dilute suspensions of finite-size particles
,”
Theor. Appl. Mech. Lett.
5
(
3
),
121
125
(
2015
).
15.
M.
Lappa
, “
On the nature of fluid-dynamics
,” in
Understanding the Nature of Science
, Science, Evolution and Creationism, edited by
P.
Lindholm
(
Nova Science Publishers Inc
.,
2019
), Chap. 1, pp. 1–64, ISBN: 978–1-53616–016-1.
16.
J. K.
Eaton
and
J. R.
Fessler
, “
Preferential concentration of particles by turbulence
,”
Int. J. Multiphase Flow
20
,
169
209
(
1994
).
17.
E. W.
Saw
,
R. A.
Shaw
,
S.
Ayyalasomayajula
,
P. Y.
Chuang
, and
A.
Gylfason
, “
Inertial clustering of particles in high-Reynolds-number turbulence
,”
Phys. Rev. Lett.
100
,
214501
(
2008
).
18.
A. D.
Bragg
, “
Developments and difficulties in predicting the relative velocities of inertial particles at the small-scales of turbulence
,”
Phys. Fluids
29
,
043301
(
2017
).
19.
J.
Shim
and
D.
You
, “
Effects of the path history on inertial particle pair dynamics in the dissipation range of homogeneous isotropic turbulence
,”
Phys. Fluids
34
,
025104
(
2022
).
20.
A. L.
Yarin
,
T. A.
Kowalewski
,
W. J.
Hiller
, and
S.
Koch
, “
Distribution of particles suspended in convective flow in differentially heated cavity
,”
Phys. Fluids
8
,
1130
1140
(
1996
).
21.
S.
Tanaka
,
H.
Kawamura
,
I.
Ueno
, and
D.
Schwabe
, “
Flow structure and dynamic particle accumulation in thermocapillary convection in a liquid bridge
,”
Phys. Fluids
18
,
067103
(
2006
).
22.
D.
Schwabe
,
A. I.
Mizev
,
M.
Udhayasankar
, and
S.
Tanaka
, “
Formation of dynamic particle accumulation structures in oscillatory thermocapillary flow in liquid bridges
,”
Phys. Fluids
19
(
7
),
072102
(
2007
).
23.
I.
Ueno
,
Y.
Abe
,
K.
Noguchi
, and
H.
Kawamura
, “
Dynamic particle accumulation structure (PAS) in half-zone liquid bridge—Reconstruction of particle motion by 3D PTV
,”
Adv. Space Res.
41
(
12
),
2145
2149
(
2008
).
24.
D.
Pushkin
,
D.
Melnikov
, and
V.
Shevtsova
, “
Ordering of small particles in one-dimensional coherent structures by time-periodic flows
,”
Phys. Rev. Lett.
106
,
234501
(
2011
).
25.
D. E.
Melnikov
,
D. O.
Pushkin
, and
V. M.
Shevtsova
, “
Synchronization of finite-size particles by a traveling wave in a cylindrical flow
,”
Phys. Fluids
25
(
9
),
092108
(
2013
).
26.
M.
Gotoda
,
D. E.
Melnikov
,
I.
Ueno
, and
V.
Shevtsova
, “
Experimental study on dynamics of coherent structures formed by inertial solid, particles in three-dimensional periodic flows
,”
Chaos
26
,
073106
(
2016
).
27.
A.
Toyama
,
M.
Gotoda
,
T.
Kaneko
, and
I.
Ueno
, “
Existence conditions and formation process of second type of spiral loop particle accumulation structure (SL-2 PAS) in half-zone liquid bridge
,”
Microgravity Sci. Technol.
29
,
263
274
(
2017
).
28.
M.
Lappa
, “
Assessment of the role of axial vorticity in the formation of particle accumulation structures (PAS) in supercritical Marangoni and hybrid thermocapillary-rotation-driven flows
,”
Phys. Fluids
25
(
1
),
012101
(
2013
).
29.
M.
Lappa
, “
On the existence and multiplicity of one-dimensional solid particle attractors in time-dependent Rayleigh–Bénard convection
,”
Chaos
23
(
1
),
013105
(
2013
).
30.
M.
Lappa
, “
On the variety of particle accumulation structures under the effect of g-jitters
,”
J. Fluid Mech.
726
,
160
195
(
2013
).
31.
M.
Lappa
, “
Stationary solid particle attractors in standing waves
,”
Phys. Fluids
26
(
1
),
013305
(
2014
).
32.
G.
Metcalfe
, “
Push and pull: Attractors and repellors of a dynamical system can localize inertial particles
,”
Granular Matter
21
,
95
(
2019
).
33.
C.
Venditti
,
M.
Giona
, and
A.
Adrover
, “
Invariant manifold approach for quantifying the dynamics of highly inertial particles in steady and time-periodic incompressible flows
,”
Chaos
32
,
023121
(
2022
).
34.
M.
Sommerfeld
, “
Particle dispersion in turbulent flow: The effect of particle size distribution
,”
Part. Part. Syst. Charact.
7
(
1–4
),
209
220
(
1990
).
35.
D. V.
Lyubimov
,
T. P.
Lyubimova
, and
A. V.
Straube
, “
Accumulation of solid particles in convective flows
,”
Microgravity Sci. Technol.
16
,
210
214
(
2005
).
36.
G.
Haller
and
T.
Sapsis
, “
Where do inertial particles go in fluid flows?
,”
Physica D
237
(
5
),
573
583
(
2008
).
37.
P.
Capobianchi
and
M.
Lappa
, “
Particle accumulation structures in noncylindrical liquid bridges under microgravity conditions
,”
Phys. Rev. Fluids
5
(
8
),
084304
(
2020
).
38.
P.
Capobianchi
and
M.
Lappa
, “
On the influence of gravity on particle accumulation structures in high aspect-ratio liquid bridges
,”
J. Fluid Mech.
908
,
A29
(
2021
).
39.
T. D.
Rossing
, “
Chladni's law for vibrating plates
,”
Am. J. Phys.
50
,
271
274
(
1982
).
40.
P.
Capobianchi
and
M.
Lappa
, “
Particle accumulation structures in a 5 cSt silicone oil liquid bridge: New data for the preparation of the JEREMI experiment
,”
Microgravity Sci. Technol.
33
,
31
(
2021
).
41.
G. Z.
Gershuni
and
D. V.
Lyubimov
,
Thermal Vibrational Convection
(
Wiley
,
1998
).
42.
R.
Savino
and
M.
Lappa
, “
Assessment of the thermovibrational theory: Application to g-jitter on the space-station
,”
J. Spacecr. Rockets
40
(
2
),
201
210
(
2003
).
43.
A.
Mialdun
,
I. I.
Ryzhkov
,
D. E.
Melnikov
, and
V.
Shevtsova
, “
Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment
,”
Phys. Rev. Lett.
101
,
084501
(
2008
).
44.
A. H.
Ahadi
and
M. Z.
Saghir
, “
Quasi steady state effect of micro vibration from two space vehicles on mixture during thermodiffusion experiment
,”
Fluid Dyn. Mater. Process.
8
(
4
),
397
422
(
2012
).
45.
T. P.
Lyubimova
,
A. V.
Perminov
, and
M. G.
Kazimardanov
, “
Stability of quasi-equilibrium states and supercritical regimes of thermal vibrational convection of a Williamson fluid in zero gravity conditions
,”
Int. J. Heat Mass Transfer
129
,
406
414
(
2019
).
46.
S.
Bouarab
,
F.
Mokhtari
,
S.
Kaddeche
,
D.
Henry
,
V.
Botton
, and
A.
Medelfef1
, “
Theoretical and numerical study on high frequency vibrational convection: Influence of the vibration direction on the flow structure
,”
Phys. Fluids
31
(
4
),
043605
(
2019
).
47.
V.
Shevtsova
,
T.
Lyubimova
,
Z.
Saghir
,
D.
Melnikov
,
Y.
Gaponenko
,
V.
Sechenyh
,
J. C.
Legros
, and
A.
Mialdun
, “
IVIDIL: On-board g-jitters and diffusion controlled phenomena
,”
J. Phys.: Conf. Ser.
327
,
012031
(
2011
).
48.
V.
Shevtsova
,
A.
Mialdun
,
D.
Melnikov
,
I.
Ryzhkov
,
Y.
Gaponenko
,
Z.
Saghir
,
T.
Lyubimova
, and
J. C.
Legros
, “
The IVIDIL experiment onboard the ISS: Thermodiffusion in the presence of controlled vibrations
,”
C. R Méc.
339
(
5
),
310
317
(
2011
).
49.
B.
Maryshev
,
T.
Lyubimova
, and
D.
Lyubimov
, “
Two-dimensional thermal convection in porous enclosure subjected to the horizontal seepage and gravity modulation
,”
Phys. Fluids
25
,
084105
(
2013
).
50.
M.
Lappa
, “
Control of convection patterning and intensity in shallow cavities by harmonic vibrations
,”
Microgravity Sci. Technol.
28
(
1
),
29
39
(
2016
).
51.
A.
Vorobev
and
T.
Lyubimova
, “
Vibrational convection in a heterogeneous binary mixture. Part I. Time-averaged equations
,”
J. Fluid Mech.
870
,
543
562
(
2019
).
52.
A.
Boaro
and
M.
Lappa
, “
Multicellular states of viscoelastic thermovibrational convection in a square cavity
,”
Phys. Fluids
33
(
3
),
033105
033118
(
2021
).
53.
A.
Boaro
and
M.
Lappa
, “
Competition of overstability and stabilizing effects in viscoelastic thermovibrational flow
,”
Phys. Rev. E
104
(
2
),
025102
(
2021
).
54.
G.
Crewdson
and
M.
Lappa
, “
The zoo of modes of convection in liquids vibrated along the direction of the temperature gradient
,”
Fluids
6
(
1
),
30
(
2021
).
55.
G.
Crewdson
and
M.
Lappa
, “
Spatial and temporal evolution of three-dimensional thermovibrational convection in a cubic cavity with various thermal boundary conditions
,”
Phys. Fluids
34
(
1
),
014108
(
2022
).
56.
M.
Lappa
, “
The patterning behaviour and accumulation of spherical particles in a vibrated non-isothermal liquid
,”
Phys. Fluids
26
(
9
),
093301
(
2014
).
57.
M.
Lappa
, “
Numerical study into the morphology and formation mechanisms of three-dimensional particle structures in vibrated cylindrical cavities with various heating conditions
,”
Phys. Rev. Fluids
1
(
6
),
064203
(
2016
).
58.
M.
Lappa
, “
On the multiplicity and symmetry of particle attractors in confined non-isothermal fluids subjected to inclined vibrations
,”
Int. J. Multiphase Flow
93
,
71
83
(
2017
).
59.
M.
Lappa
, “
On the formation and morphology of coherent particulate structures in non-isothermal enclosures subjected to rotating g-jitters
,”
Phys. Fluids
31
(
7
),
073303
(
2019
).
60.
S. S.
Tabakova
and
Z. D.
Zapruanov
, “
On the hydrodynamic interaction of two spheres oscillating in a viscous fluid. I. Axisymmetrical case
,”
J. Appl. Math. Phys.
33
,
344
357
(
1982
);
S. S.
Tabakova
and
Z. D.
Zapruanov
On the hydrodynamic interaction of two spheres oscillating in a viscous fluid. II. Three dimensional case
,”
J. Appl. Math. Phys.
33
,
487
502
(
1982
).
61.
R.
Wunenburger
,
V.
Carrier
, and
Y.
Garrabos
, “
Periodic order induced by horizontal vibrations in a two-dimensional assembly of heavy beads in water
,”
Phys. Fluids
14
(
7
),
2350
2359
(
2002
).
62.
A. A.
Ivanova
,
V. G.
Kozlov
, and
A. F.
Kuzaev
, “
Vibrational lift force acting on a body in a fluid near a solid surface
,”
Dokl. RAN
50
(
4
),
311
314
(
2005
)
A. A.
Ivanova
,
V. G.
Kozlov
, and
A. F.
Kuzaev
, [Translated:
Dokl. Phys.
50
(
6
),
311
314
(
2005
)].
63.
V. G.
Kozlov
,
A. A.
Ivanova
, and
P.
Evesque
, “
Block stratification of sedimenting granular matter in a vessel due to vertical vibration
,”
Fluid Dyn. Mater. Process
2
(
3
),
203
210
(
2006
).
64.
M.
Lappa
and
T.
Burel
, “
Symmetry breaking phenomena in thermovibrationally driven particle accumulation structures
,”
Phys. Fluids
32
(
5
),
053314
053323
(
2020
).
65.
G.
Crewdson
and
M.
Lappa
, “
An investigation into the behavior of non-isodense particles in chaotic thermovibrational flow
,”
Fluid Dyn. Mater. Process.
18
(
3
),
497
(
2022
).
66.
M.
Lappa
,
T.
Burel
,
M.
Kerr
,
G.
Crewdson
,
A.
Boaro
,
P.
Capobianchi
,
S. V.
Bonnieu
,
L.
Murphy
,
P.
Randall
, and
S.
Hens
, “
Particle vibration, an instrument to study particle accumulation structures on board the International Space Station
,”
Microgravity Sci. Technol.
(in press) (
2022
).
67.
T.
Uchiyama
, “
Grid-free vortex method for particle-laden gas flow
,”
Fluid Dyn. Mater. Process
7
(
4
),
371
388
(
2011
).
68.
D.
Bothe
,
M.
Kröger
, and
H.-J.
Warnecke
, “
A VOF-based conservative method for the simulation of reactive mass transfer from rising bubbles
,”
Fluid Dyn. Mater. Process
7
(
3
),
303
316
(
2011
).
69.
A.
Mark
,
R.
Rundqvist
, and
F.
Edelvik
, “
Comparison between different immersed boundary conditions for simulation of complex fluid flows
,”
Fluid Dyn. Mater. Process
7
(
3
),
241
258
(
2011
).
70.
S.
Homma
,
M.
Yokotsuka
,
T.
Tanaka
,
K.
Moriguchi
,
J.
Koga
, and
G.
Tryggvason
, “
Numerical simulation of an axisymmetric compound droplet by three-fluid front-tracking method
,”
Fluid Dyn. Mater. Process
7
(
3
),
231
240
(
2011
).
71.
S.
Haeri
and
J. S.
Shrimpton
, “
Fully resolved simulation of particle deposition and heat transfer in a differentially heated cavity
,”
Int. J. Heat Fluid Flow
50
,
1
15
(
2014
).
72.
M.
Lappa
,
D.
Drikakis
, and
I.
Kokkinakis
, “
On the propagation and multiple reflections of a blast wave travelling through a dusty gas in a closed box
,”
Phys. Fluids
29
(
3
),
033301
033319
(
2017
).
73.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
889
(
1983
).
74.
H. C.
Kuhlmann
 et al, “
The JEREMI-Project on thermocapillary convection in liquid bridges. Part A: Overview of particle accumulation structures
,”
Fluid Dyn. Mater. Process
10
(
1
),
1
36
(
2014
).
75.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic Press
,
New York
,
1978
).
76.
M.
Lappa
, “
Time reversibility and non-deterministic behaviour in oscillatorily sheared suspensions of non-interacting particles at high Reynolds numbers
,”
Comput. Fluids
184
,
78
90
(
2019
).
77.
S.
Elghobashi
, “
On predicting particle-laden turbulent flows
,”
Appl. Sci. Res.
52
,
309
329
(
1994
).
78.
T.
Bodnár
,
G. P.
Galdi
, and
Š.
Necasová
,
Particles in Flows
(
Birkhäuser
,
2017
).
79.
J. K.
Eaton
, “
Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking
,”
Int. J. Multiphase Flow
35
,
792
800
(
2009
).
80.
V.
Bianco
,
F.
Chiacchio
,
O.
Manca
, and
S.
Nardini
, “
Numerical investigation of nanofluids forced convection in circular tubes
,”
Appl. Therm. Eng.
29
(
17–18
),
3632
3642
(
2009
).
81.
F.
Greifzu
,
C.
Kratzsch
,
T.
Forgber
,
F.
Lindner
, and
R.
Schwarze
, “
Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT
,”
Eng. Appl. Comput. Fluid Mech.
10
(
1
),
30
43
(
2016
).
82.
O. A.
Ladyzhenskaya
,
The Mathematical Theory of Viscous Incompressible Flow
, 2nd ed. (
Gordon and Breach
,
New York–London
,
1969
).
83.
J.
Shen
, “
On error estimates of the projection methods for the Navier–Stokes equations: Second-order schemes
,”
Math. Comput.
65
(
215
),
1039
1066
(
1996
).
84.
S.
Armfield
and
R.
Street
, “
The fractional-step method for the Navier–Stokes equations on staggered grids: The accuracy of three variations
,”
J. Comput. Phys.
153
(
2
),
660
665
(
1999
).
85.
M. J.
Lee
,
B. D.
Oh
, and
Y. B.
Kim
, “
Canonical fractional-step methods and consistent boundary conditions for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
168
,
73
100
(
2001
).
86.
J.-L.
Guermond
,
P.
Minev
, and
J.
Shen
, “
An overview of projection methods for incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
195
,
6011
6045
(
2006
).
87.
S. K.
Choi
,
H. Y.
Nam
, and
M.
Cho
, “
Systematic comparison of finite-volume calculation methods with staggered and nonstaggered grid arrangement
,”
Numer. Heat Transfer, Part B
25
(
2
),
205
221
(
1994
).
88.
S. K.
Choi
,
H. Y.
Nam
, and
M.
Cho
, “
Use of staggered and nonstaggered grid arrangements for incompressible flow calculations on nonorthogonal grids
,”
Numer. Heat Transfer, Part B
25
(
2
),
193
204
(
1994
).
89.
M.
Lappa
, “
Strategies for parallelizing the three-dimensional Navier–Stokes equations on the Cray T3E
,”
Sci. Supercomputing CINECA
11
,
326
340
(
1997
).
90.
M.
Lappa
, “
A mathematical and numerical framework for the simulation of oscillatory buoyancy and Marangoni convection in rectangular cavities with variable cross section
,” in
Computational Modeling of Bifurcations and Instabilities in Fluid Mechanics
, Computational Methods in Applied Sciences Vol. 50, edited by
A.
Gelfgat
(
Springer
,
2019
), Chap. 12, pp.
419
458
, ISBN: 978-3-319-91493-0.
91.
S. V.
Patankar
,
Numerical Heat Transfer and Fluid Flow
(
Hemisphere Publishing Corporation
,
1981
).
92.
C. M.
Rhie
and
W. L.
Chow
, “
Numerical study of the turbulent flow past an airfoil with trailing edge separation
,”
AIAA J.
21
,
1525
1532
(
1983
).
93.
B. R.
Hutchinson
and
G. D.
Raithby
, “
A multigrid method based on the additive correction strategy
,”
Numer. Heat Transfer
9
,
511
537
(
1986
).
94.
J. R.
Cash
and
A. H.
Karp
, “
A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides
,”
ACM Trans. Math. Software
16
,
201
222
(
1990
).
95.
H.
Khallouf
,
G. Z.
Gershuni
, and
A.
Mojtabi
, “
Numerical study of two-dimensional thermo-vibrational convection in rectangular cavities
,”
Num. Heat Trans. A
27
,
297
305
(
1995
).
96.
M.
Lappa
,
Thermal Convection: Patterns, Evolution and stability
(
John Wiley & Sons, Ltd. Chichester
,
2009
).
97.
M.
Lappa
and
H.
Ferialdi
, “
Multiple solutions, oscillons and strange attractors in thermoviscoelastic Marangoni convection
,”
Phys. Fluids
30
(
10
),
104104
104119
(
2018
).
98.
M.
Lappa
, “
On the transport, segregation and dispersion of heavy and light particles interacting with rising thermal plumes
,”
Phys. Fluids
30
(
3
),
033302
(
2018
).
You do not currently have access to this content.