This study focused on the nonlinear rheological characterization of three types of cellulose nanofibril (CNF) suspensions under large amplitude oscillatory shear (LAOS) flow. Three different CNFs were produced, two by mechanical fibrillation alone under different conditions [here named microfibrillated cellulose (MFC) and U-CNF] and the other by mechanical fibrillation after carboxymethylation (CM-CNF). MFC and U-CNF had broad width distributions, whereas CM-CNF had narrower fibril width and width distribution due to the presence of charged carboxymethyl groups. Nonlinear stress responses of the prepared suspensions were analyzed using the sequence of physical processes method. All CNF suspensions exhibited intracycle rheological transitions composed of three physical processes: (1) structure recovery, (2) elastic deformation to early stage yielding, and (3) late-stage yielding. MFC and U-CNF suspensions exhibited similar rheological transitions overall. However, CM-CNF suspension had a higher network recovery rate within a shorter time and showed an additional yielding step due to the complex interplay between recovery and yielding dynamics. This result originated from complete nanofibrillation and charged functional groups on fibril surfaces. Rapid reformation of effective fibril–fibril contacts in CM-CNF suspension was attributed to electrostatic repulsions and complete nanosized lateral dimensions. In addition, excitation frequency was found to influence intracycle rheological transitions. A range of intracycle rheological transitions became narrower on increasing frequency because the time period for each transition was not enough under faster flow conditions. In particular, the characteristic yielding step of CM-CNF suspension disappeared on increasing frequency, which suggested that high-frequency excitation might be unfavorable for the nonlinear viscoelastic characterization of soft materials under LAOS flow.

1.
O.
Nechyporchuk
,
M. N.
Belgacem
, and
J.
Bras
, “
Production of cellulose nanofibrils: A review of recent advances
,”
Ind. Crops Prod.
93
,
2
25
(
2016
).
2.
D.
Klemm
,
F.
Kramer
,
S.
Moritz
,
T.
Lindström
,
M.
Ankerfors
,
D.
Gray
, and
A.
Dorris
, “
Nanocelluloses: A new family of nature-based materials
,”
Angew. Chem., Int. Ed.
50
(
24
),
5438
5466
(
2011
).
3.
I.
Siró
and
D.
Plackett
, “
Microfibrillated cellulose and new nanocomposite materials: A review
,”
Cellulose
17
(
3
),
459
494
(
2010
).
4.
A.-H.
Vesterinen
,
P.
Myllytie
,
J.
Laine
, and
J.
Seppälä
, “
The effect of water-soluble polymers on rheology of microfibrillar cellulose suspension and dynamic mechanical properties of paper sheet
,”
J. Appl. Polym. Sci.
116
(
5
),
2990
2997
(
2010
).
5.
F.
Hoeng
,
A.
Denneulin
,
N.
Reverdy-Bruas
,
G.
Krosnicki
, and
J.
Bras
, “
Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing
,”
Appl. Surf. Sci.
394
,
160
168
(
2017
).
6.
B.
Nazari
and
D. W.
Bousfield
, “
Cellulose nanofibers influence on properties and processing of paperboard coatings
,”
Nord. Pulp Pap. Res. J.
31
(
3
),
511
520
(
2016
).
7.
P.
Bertsch
and
P.
Fischer
, “
Adsorption and interfacial structure of nanocelluloses at fluid interfaces
,”
Adv. Colloid Interface Sci.
276
,
102089
(
2020
).
8.
K. J.
De France
,
T.
Hoare
, and
E. D.
Cranston
, “
Review of hydrogels and aerogels containing nanocellulose
,”
Chem. Mater.
29
(
11
),
4609
4631
(
2017
).
9.
I.
Capron
,
O. J.
Rojas
, and
R.
Bordes
, “
Behavior of nanocelluloses at interfaces
,”
Curr. Opin. Colloid Interface Sci.
29
,
83
95
(
2017
).
10.
M. A.
Hubbe
,
P.
Tayeb
,
M.
Joyce
,
P.
Tyagi
,
M.
Kehoe
,
K.
Dimic-Misic
, and
L.
Pal
, “
Rheology of nanocellulose-rich aqueous suspensions: A review
,”
BioResources
12
(
4
),
9556
9661
(
2017
).
11.
O.
Nechyporchuk
,
M. N.
Belgacem
, and
F.
Pignon
, “
Current progress in rheology of cellulose nanofibril suspensions
,”
Biomacromolecules
17
(
7
),
2311
2320
(
2016
).
12.
A.
Naderi
, “
Nanofibrillated cellulose: Properties reinvestigated
,”
Cellulose
24
(
5
),
1933
1945
(
2017
).
13.
M.
Pääkkö
,
M.
Ankerfors
,
H.
Kosonen
,
A.
Nykänen
,
S.
Ahola
,
M.
Österberg
,
J.
Ruokolainen
,
J.
Laine
,
P. T.
Larsson
,
O.
Ikkala
, and
T.
Lindström
, “
Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels
,”
Biomacromolecules
8
(
6
),
1934
1941
(
2007
).
14.
R. J.
Hill
, “
Elastic modulus of microfibrillar cellulose gels
,”
Biomacromolecules
9
(
10
),
2963
2966
(
2008
).
15.
L.
Jowkarderis
and
T. G. M.
van de Ven
, “
Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils
,”
Carbohyd. Polym.
123
,
416
423
(
2015
).
16.
S.
Mohan
,
G. H.
Koenderink
, and
K. P.
Velikov
, “
Inelastic behaviour of cellulose microfibril networks
,”
Soft Matter
14
(
33
),
6828
6834
(
2018
).
17.
A.
Naderi
and
T.
Lindström
, “
A comparative study of the rheological properties of three different nanofibrillated cellulose systems
,”
Nord. Pulp Pap. Res. J.
31
(
3
),
354
363
(
2016
).
18.
S. M.
Notley
,
B.
Pettersson
, and
L.
Wågberg
, “
Direct measurement of attractive van der Waals' forces between regenerated cellulose surfaces in an aqueous environment
,”
J. Am. Chem. Soc.
126
(
43
),
13930
13931
(
2004
).
19.
B.
Nazari
,
V.
Kumar
,
D. W.
Bousfield
, and
M.
Toivakka
, “
Rheology of cellulose nanofibers suspensions: Boundary driven flow
,”
J. Rheol.
60
(
6
),
1151
1159
(
2016
).
20.
K.
Hyun
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
(
12
),
1697
1753
(
2011
).
21.
H. Y.
Song
and
K.
Hyun
, “
Nonlinear material functions under medium amplitude oscillatory shear (MAOS) flow
,”
Korea-Aust. Rheol. J.
31
(
4
),
267
284
(
2019
).
22.
R.
Salehiyan
,
H. Y.
Song
, and
K.
Hyun
, “
Nonlinear behavior of PP/PS blends with and without clay under large amplitude oscillatory shear (LAOS) flow
,”
Korea-Aust. Rheol. J.
27
(
2
),
95
103
(
2015
).
23.
S. H.
Lee
,
H. Y.
Song
,
K.
Hyun
, and
J. H.
Lee
, “
Nonlinearity from FT-rheology for liquid crystal 8CB under large amplitude oscillatory shear (LAOS) flow
,”
J. Rheol.
59
(
1
),
1
19
(
2015
).
24.
M.
Kim
,
H. Y.
Song
,
W. J.
Choi
, and
K.
Hyun
, “
Evaluation of the degree of dispersion of polymer nanocomposites (PNCs) using nonlinear rheological properties by FT-rheology
,”
Macromolecules
52
(
22
),
8604
8616
(
2019
).
25.
H. Y.
Song
,
S. J.
Park
, and
K.
Hyun
, “
Characterization of dilution effect of semidilute polymer solution on intrinsic nonlinearity Q0 via FT rheology
,”
Macromolecules
50
(
16
),
6238
6254
(
2017
).
26.
A. J.
Giacomin
and
J. M.
Dealy
, “
Large-amplitude oscillatory shear
,” in
Techniques in Rheological Measurement
, edited by
A. A.
Collyer
(
Chapman & Hall
,
London, New York
,
1993
), pp.
99
121
.
27.
S. A.
Rogers
, “
In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity
,”
Rheol. Acta
56
(
5
),
501
525
(
2017
).
28.
H. Y.
Song
,
S. Y.
Park
,
S.
Kim
,
H. J.
Youn
, and
K.
Hyun
, “
Linear and nonlinear oscillatory rheology of chemically pretreated and non-pretreated cellulose nanofiber suspensions
,”
Carbohyd. Polym.
275
,
118765
(
2022
).
29.
H. Y.
Song
,
R.
Salehiyan
,
X.
Li
,
S. H.
Lee
, and
K.
Hyun
, “
A comparative study of the effects of cone-plate and parallel-plate geometries on rheological properties under oscillatory shear flow
,”
Korea-Aust. Rheol. J.
29
(
4
),
281
294
(
2017
).
30.
T. S. K.
Ng
,
G. H.
McKinley
, and
R. H.
Ewoldt
, “
Large amplitude oscillatory shear flow of gluten dough: A model power-law gel
,”
J. Rheol.
55
(
3
),
627
654
(
2011
).
31.
S. H.
Lee
,
H. Y.
Song
, and
K.
Hyun
, “
Effects of silica nanoparticles on copper nanowire dispersions in aqueous PVA solutions
,”
Korea-Aust. Rheol. J.
28
(
2
),
111
120
(
2016
).
32.
C.
Gamonpilas
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear and normal stress measurements in non-Brownian monodisperse and bidisperse suspensions
,”
J. Rheol.
60
(
2
),
289
296
(
2016
).
33.
S. A.
Rogers
, “
A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach
,”
J. Rheol.
56
(
5
),
1129
1151
(
2012
).
34.
S. A.
Rogers
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid
,”
J. Rheol.
55
(
2
),
435
458
(
2011
).
35.
J.
Choi
,
F.
Nettesheim
, and
S. A.
Rogers
, “
The unification of disparate rheological measures in oscillatory shearing
,”
Phys. Fluids
31
(
7
),
073107
(
2019
).
36.
J. D.
Park
and
S. A.
Rogers
, “
The transient behavior of soft glassy materials far from equilibrium
,”
J. Rheol.
62
(
4
),
869
888
(
2018
).
37.
J. D.
Park
and
S. A.
Rogers
, “
Rheological manifestation of microstructural change of colloidal gel under oscillatory shear flow
,”
Phys. Fluids
32
(
6
),
063102
(
2020
).
38.
K.
Dimic-Misic
,
J.
Rantanen
,
T. C.
Maloney
, and
P. A. C.
Gane
, “
Gel structure phase behavior in micro nanofibrillated cellulose containing in situ precipitated calcium carbonate
,”
J. Appl. Polym. Sci.
133
(
22
),
43486
(
2016
).
39.
Y.
Matsumiya
,
H.
Watanabe
,
K.
Abe
,
Y.
Matsumura
,
F.
Tani
,
Y.
Kase
,
S.
Kikkawa
,
Y.
Suzuki
, and
N.
Ishii
, “
Rheology of nano-cellulose fiber suspension
,”
J. Soc. Rheol., Jpn.
45
(
1
),
3
11
(
2016
).
40.
A. B.
Fall
,
S. B.
Lindström
,
J.
Sprakel
, and
L.
Wågberg
, “
A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation
,”
Soft Matter
9
(
6
),
1852
1863
(
2013
).
41.
J. C.-W.
Lee
,
J. D.
Park
, and
S. A.
Rogers
, “
Studying large amplitude oscillatory shear response of soft materials
,”
J. Vis. Exp.
146
,
e58707
(
2019
).
42.
M.
Wilhelm
, “
Fourier-transform rheology
,”
Macromol. Mater. Eng.
287
(
2
),
83
105
(
2002
).
43.
C.-W.
Lee
and
S. A.
Rogers
, “
A sequence of physical processes quantified in LAOS by continuous local measures
,”
Korea-Aust. Rheol. J.
29
(
4
),
269
279
(
2017
).
44.
L.
Mendoza
,
W.
Batchelor
,
R. F.
Tabor
, and
G.
Garnier
, “
Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective
,”
J. Colloid Interface Sci.
509
,
39
46
(
2018
).
45.
D.
Lee
,
Y.
Oh
,
J.-K.
Yoo
,
J. W.
Yi
,
M.-K.
Um
, and
T.
Park
, “
Rheological study of cellulose nanofiber disintegrated by a controlled high-intensity ultrasonication for a delicate nano-fibrillation
,”
Cellulose
27
(
16
),
9257
9269
(
2020
).
46.
P. R.
de Souza Mendes
,
R. L.
Thompson
,
A. A.
Alicke
, and
R. T.
Leite
, “
The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter
,”
J. Rheol.
58
(
2
),
537
561
(
2014
).

Supplementary Material

You do not currently have access to this content.