We describe the structure and outcomes of a course project for do-it-yourself (DIY) rheometry. Although the project was created in response to the shelter-in-place orders of the COVID-19 pandemic, the student learning outcomes were so positive that we have continued implementing the project even when students have access to laboratory rheometers. Students select an interesting complex fluid, collect qualitative visual evidence of key rheological phenomena, and then produce their own readily available flows that they quantitatively analyze to infer rheological properties, such as yield stress, extensional viscosity, or shear viscosity. We provide an example rubric, present example student project outcomes, and discuss learning outcomes that are achieved with DIY measurements.

1.
A. Z.
Nelson
, “The soft matter kitche: Improving the accessibility of rheology education and outreach through food materials,”
Phys. Fluids
34
,
031801
(
2022
).
2.
A. J. T. M.
Mathijssen
,
M.
Lisicki
,
V. N.
Prakash
, and
E. J. L.
Mossige
, “
Culinary fluid mechanics and other currents in food science
,” arXiv:2201.12128 (
2022
).
3.
C. W.
Macosko
,
Rheology Principles, Measurements and Applications
(
VCH
,
1994
).
4.
R. H.
Ewoldt
and
C.
Saengow
, “
Designing Complex Fluids
,”
Annu. Rev. Fluid Mech.
54
,
413
(
2022
).
5.
P.
Coussot
,
Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment
(
Wiley
,
2005
).
6.
G. H.
Meeten
, “
Yield stress of structured fluids measured by squeeze flow
,”
Rheol. Acta
39
,
399
(
2000
).
7.
R. H.
Ewoldt
,
P.
Tourkine
,
G. H.
McKinley
, and
A. E.
Hosoi
, “
Controllable adhesion using field-activated fluids
,”
Phys. Fluids
23
,
073104
(
2011
).
8.
A. Z.
Nelson
,
K. S.
Schweizer
,
B. M.
Rauzan
,
R. G.
Nuzzo
,
J.
Vermant
, and
R. H.
Ewoldt
, “
Designing and transforming yield-stress fluids
,”
Curr. Opin. Solid State Mater. Sci.
23
,
100758
(
2019
).
9.
A.
Sun
and
S.
Gunasekaran
, “
Yield stress in foods: Measurements and applications
,”
Int. J. Food Prop.
12
,
70
(
2009
).
10.
I.
Hughes
and
T.
Hase
,
Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis
(
OUP
,
Oxford
,
2010
).
11.
A.
Geffrault
,
H.
Bessaies-Bey
,
N.
Roussel
, and
P.
Coussot
, “
Extensional gravity-rheometry (EGR) for yield stress fluids
,”
J. Rheol.
65
,
887
(
2021
).
12.
G. H.
McKinley
and
T.
Sridhar
, “
Filament -stretching rheometry of complex fluids
,”
Annu. Rev. Fluid Mech.
34
,
375
(
2002
).
13.
Z.
Liu
,
L.
Liu
,
H.
Zhou
,
J.
Wang
, and
L.
Deng
, “
Toothpaste microstructure and rheological behaviors including aging and partial rejuvenation
,”
Korea-Australia Rheol. J.
27
,
207
(
2015
).
14.
F. T.
Trouton
, “
On the coefficient of viscous traction and its relation to that of viscosity
,”
Proc. R. Soc. London, Ser. A
77
,
426
(
1906
).
15.
W. M.
Jones
,
N. E.
Hudson
, and
J.
Ferguson
, “
The extensional properties of M1 obtained from the stretching of a filament by a falling pendant drop
,”
J. Non-Newtonian Fluid Mech.
35
,
263
(
1990
).
16.
Y. M.
Stokes
,
E. O.
Tuck
, and
L. W.
Schwartz
, “
Extensional fall of a very viscous fluid drop
,”
Q. J. Mech. Appl. Math.
53
,
565
(
2000
).
17.
P.
Szabo
,
G. H.
McKinley
, and
C.
Clasen
, “
Constant force extensional rheometry of polymer solutions
,”
J. Non Newtonian Fluid Mech.
169–170
,
26
(
2012
).
18.
C.
Bonnoit
,
T.
Darnige
,
E.
Clement
, and
A.
Lindner
, “
Inclined plane rheometry of a dense granular suspension
,”
J. Rheol.
54
,
65
(
2010
).
19.
L. D.
Landau
and
E. M.
Lifshitz
, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, 1987), Vol. 6.
20.
B.
Abu‐Jdayil
,
R. R.
Shaker
, and
R. Y.
Jumah
, “
Rheological behavior of concentrated yogurt (Labneh)
,”
Int. J. Food Prop.
3
,
207
(
2000
).
21.
H.
Pascal
, “
Gravity flow of a non-Newtonian fluid sheet on an inclined plane
,”
Int. J. Eng. Sci.
29
,
1307
(
1991
).
22.
G.
Bognár
,
I.
Gombköto
, and
K.
Hriczó
,
Int. J. Math. Model. Methods Appl. Sci.
6
,
72
(
2012
).
23.
R. H.
Ewoldt
,
Rheological Measurements Short Course—Online
(
University of Minnesota
,
2020
).
24.
S.
Clayton
,
T. G.
Grice
, and
D. V.
Boger
, “
Analysis of the slump test for on-site yield stress measurement of mineral suspensions
,”
Int. J. Miner. Process.
70
,
3
(
2003
).
25.
N.
Roussel
and
P.
Coussot
, “‘
Fifty-cent rheometer’ for yield stress measurements: From slump to spreading flow
,”
J. Rheol.
49
,
705
(
2005
).
26.
Z.
Tan
,
S. A.
Bernal
, and
J. L.
Provis
, “
Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes
,”
Mater. Struct.
50
,
235
(
2017
).
You do not currently have access to this content.