The complex flow modeling based on machine learning is becoming a promising way to describe multiphase fluid systems. This work demonstrates how a physics-informed neural network promotes the combination of traditional governing equations and advanced interface evolution equations without intricate algorithms. We develop physics-informed neural networks for the phase-field method (PF-PINNs) in two-dimensional immiscible incompressible two-phase flow. The Cahn–Hillard equation and Navier–Stokes equations are encoded directly into the residuals of a fully connected neural network. Compared with the traditional interface-capturing method, the phase-field model has a firm physical basis because it is based on the Ginzburg–Landau theory and conserves mass and energy. It also performs well in two-phase flow at the large density ratio. However, the high-order differential nonlinear term of the Cahn–Hilliard equation poses a great challenge for obtaining numerical solutions. Thus, in this work, we adopt neural networks to tackle the challenge by solving high-order derivate terms and capture the interface adaptively. To enhance the accuracy and efficiency of PF-PINNs, we use the time-marching strategy and the forced constraint of the density and viscosity. The PF-PINNs are tested by two cases for presenting the interface-capturing ability of PINNs and evaluating the accuracy of PF-PINNs at the large density ratio (up to 1000). The shape of the interface in both cases coincides well with the reference results, and the dynamic behavior of the second case is precisely captured. We also quantify the variations in the center of mass and increasing velocity over time for validation purposes. The results show that PF-PINNs exploit the automatic differentiation without sacrificing the high accuracy of the phase-field method.

1.
P. J.
Schmid
and
J.
Sesterhenn
,
Dynamic Mode Decomposition of Numerical and Experimental Data
(
Cambridge University Press
,
2010
), pp.
5
28
.
2.
T.
Murata
,
K.
Fukami
, and
K.
Fukagata
, “
Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
,”
J. Fluid Mech.
882
,
A13
(
2020
).
3.
C. W.
Rowley
and
S. T. M.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
4.
S. E.
Ahmed
,
S.
Pawar
,
O.
San
,
A.
Rasheed
,
T.
Iliescu
, and
B. R.
Noack
, “
On closures for reduced order models—A spectrum of first-principle to machine-learned avenues
,”
Phys. Fluids
33
,
091301
(
2021
).
5.
P.
Wu
,
S.
Gong
,
K.
Pan
,
F.
Qiu
,
W.
Feng
, and
C.
Pain
, “
Reduced order model using convolutional auto-encoder with self-attention
,”
Phys. Fluids
33
,
077107
(
2021
).
6.
R.
Maulik
,
B.
Lusch
, and
P.
Balaprakash
, “
Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
,”
Phys. Fluids
33
,
037106
(
2021
).
7.
B.
Colvert
,
M.
Alsalman
, and
E.
Kanso
, “
Classifying vortex wakes using neural networks
,”
Bioinspiration Biomimetics
13
,
025003
(
2018
).
8.
B. L.
Li
,
Z. X.
Yang
,
X.
Zhang
,
G. W.
He
, and
L.
Shen
, “
Using machine learning to detect the turbulent region in flow past a circular cylinder
,”
J. Fluid Mech.
905
,
A10
(
2020
).
9.
M. Y.
Wang
and
M. S.
Hemati
, “
Detecting exotic wakes with hydrodynamic sensors
,”
Theor. Comput. Fluid Dyn.
33
,
235
254
(
2019
).
10.
H.
Li
and
J.
Tan
, “
Cluster-based Markov model to understand the transition dynamics of a supersonic mixing layer
,”
Phys. Fluids
32
,
056104
(
2020
).
11.
Z.
Zhang
,
X. D.
Song
,
S. R.
Ye
,
Y. W.
Wang
,
C. G.
Huang
,
Y. R.
An
, and
Y. S.
Chen
, “
Application of deep learning method to Reynolds stress models of channel flow based on reduced-order modeling of DNS data
,”
J. Hydrodyn.
31
,
58
65
(
2019
).
12.
H.
Xiao
,
J. L.
Wu
,
J. X.
Wang
,
R.
Sun
, and
C.
Roy
, “
Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach
,”
J. Comput. Phys.
324
,
115
136
(
2016
).
13.
A. P.
Singh
,
S.
Medida
, and
K.
Duraisamy
, “
Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils
,”
AIAA J.
55
,
2215
2227
(
2017
).
14.
D.
Schmidt
,
R.
Maulik
, and
K.
Lyras
, “
Machine learning accelerated turbulence modeling of transient flashing jets
,”
Phys. Fluids
33
,
127104
(
2021
).
15.
L.
Zhu
,
W.
Zhang
,
J.
Kou
, and
Y.
Liu
, “
Machine learning methods for turbulence modeling in subsonic flows around airfoils
,”
Phys. Fluids
31
,
015105
(
2019
).
16.
S.
Taghizadeh
,
F. D.
Witherden
,
Y. A.
Hassan
, and
S. S.
Girimaji
, “
Turbulence closure modeling with data-driven techniques: Investigation of generalizable deep neural networks
,”
Phys. Fluids
33
,
115132
(
2021
).
17.
I. E.
Lagaris
,
A.
Likas
, and
D. I.
Fotiadis
, “
Artificial neural networks for solving ordinary and partial differential equations
,”
IEEE Trans. Neural Networks
9
,
987
1000
(
1998
).
18.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
19.
L.
Lu
,
X. H.
Meng
,
Z. P.
Mao
, and
G. E.
Karniadakis
, “
DeepXDE: A deep learning library for solving differential equations
,”
SIAM Rev.
63
,
208
228
(
2021
).
20.
H.
Gao
,
L.
Sun
, and
J.-X.
Wang
, “
Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels
,”
Phys. Fluids
33
,
073603
(
2021
).
21.
H.
Wang
,
Y.
Liu
, and
S.
Wang
, “
Dense velocity reconstruction from particle image velocimetry/particle tracking velocimetry using a physics-informed neural network
,”
Phys. Fluids
34
,
017116
(
2022
).
22.
A.
Arzani
,
J.-X.
Wang
, and
R. M.
D'Souza
, “
Uncovering near-wall blood flow from sparse data with physics-informed neural networks
,”
Phys. Fluids
33
,
071905
(
2021
).
23.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
24.
G. E.
Karniadakis
,
I. G.
Kevrekidis
,
L.
Lu
,
P.
Perdikaris
,
S. F.
Wang
, and
L.
Yang
, “
Physics-informed machine learning
,”
Nat. Rev. Phys.
3
,
422
440
(
2021
).
25.
X. W.
Jin
,
S. Z.
Cai
,
H.
Li
, and
G. E.
Karniadakis
, “
NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
426
,
109951
(
2021
).
26.
N.
Geneva
and
N.
Zabaras
, “
Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks
,”
J. Comput. Phys.
403
,
109056
(
2020
).
27.
R.
Laubscher
, “
Simulation of multi-species flow and heat transfer using physics-informed neural networks
,”
Phys. Fluids
33
,
087101
(
2021
).
28.
H.
Xu
,
W.
Zhang
, and
Y.
Wang
, “
Explore missing flow dynamics by physics-informed deep learning: The parameterized governing systems
,”
Phys. Fluids
33
,
095116
(
2021
).
29.
S. Z.
Cai
,
Z. C.
Wang
,
F.
Fuest
,
Y. J.
Jeon
,
C.
Gray
, and
G. E.
Karniadakis
, “
Flow over an espresso cup: Inferring 3D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks
,”
J. Fluid Mech.
915
,
A102
(
2021
).
30.
Z. P.
Mao
,
A. D.
Jagtap
, and
G. E.
Karniadakis
, “
Physics-informed neural networks for high-speed flows
,”
Comput. Methods Appl. Mech. Eng.
360
,
112789
(
2020
).
31.
S. F.
Wang
and
P.
Perdikaris
, “
Deep learning of free boundary and Stefan problems
,”
J. Comput. Phys.
428
,
109914
(
2021
).
32.
A. B.
Buhendwa
,
S.
Adami
, and
N. A.
Adams
, “
Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks
,”
Mach. Learn. Appl.
4
,
100029
(
2021
).
33.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VoF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
34.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
159
(
1994
).
35.
D.
Adalsteinsson
and
J. A.
Sethian
, “
A fast level set method for propagating interfaces
,”
J. Comput. Phys.
118
,
269
277
(
1995
).
36.
G.
Tryggvason
,
B.
Bunner
,
A.
Esmaeeli
,
D.
Juric
,
N.
Al-Rawahi
,
W.
Tauber
,
J.
Han
,
S.
Nas
, and
Y. J.
Jan
, “
A front-tracking method for the computations of multiphase flow
,”
J. Comput. Phys.
169
,
708
759
(
2001
).
37.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
38.
H.
Ding
,
P. D.
Spelt
, and
C.
Shu
, “
Diffuse interface model for incompressible two-phase flows with large density ratios
,”
J. Comput. Phys.
226
,
2078
2095
(
2007
).
39.
S.
Aland
and
A.
Voigt
, “
Benchmark computations of diffuse interface models for two-dimensional bubble dynamics
,”
Int. J. Numer. Methods Fluids
69
,
747
761
(
2012
).
40.
Z. Y.
Huang
,
G.
Lin
, and
A. M.
Ardekani
, “
Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows
,”
J. Comput. Phys.
406
,
109192
(
2020
).
41.
T. W.
Zhang
,
J.
Wu
, and
X. J.
Lin
, “
An interface-compressed diffuse interface method and its application for multiphase flows
,”
Phys. Fluids
31
,
122102
(
2019
).
42.
Y.
Xiao
,
Z.
Zeng
,
L. Q.
Zhang
,
J. Z.
Wang
,
Y. W.
Wang
,
H.
Liu
, and
C. G.
Huang
, “
A spectral element-based phase field method for incompressible two-phase flows
,”
Phys. Fluids
34
,
022114
(
2022
).
43.
M. E.
Gurtin
,
D.
Polignone
, and
J.
Vinals
, “
Two-phase binary fluids and immiscible fluids described by an order parameter
,”
Math. Models Methods Appl. Sci.
06
,
815
831
(
1996
).
44.
C.
Ma
,
J.
Wu
, and
T.
Zhang
, “
A high order spectral difference-based phase field lattice Boltzmann method for incompressible two-phase flows
,”
Phys. Fluids
32
,
122113
(
2020
).
45.
J.
Kou
,
X.
Wang
,
M.
Zeng
, and
J.
Cai
, “
Energy stable and mass conservative numerical method for a generalized hydrodynamic phase-field model with different densities
,”
Phys. Fluids
32
,
117103
(
2020
).
46.
A.
Dadvand
,
M.
Bagheri
,
N.
Samkhaniani
,
H.
Marschall
, and
M.
Worner
, “
Advected phase-field method for bounded solution of the Cahn–Hilliard Navier–Stokes equations
,”
Phys. Fluids
33
,
053311
(
2021
).
47.
A.
De Rosis
and
E.
Enan
, “
A three-dimensional phase-field lattice Boltzmann method for incompressible two-components flows
,”
Phys. Fluids
33
,
043315
(
2021
).
48.
Y.
Wang
,
C.
Shu
,
J. Y.
Shao
,
J.
Wu
, and
X. D.
Niu
, “
A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio
,”
J. Comput. Phys.
290
,
336
351
(
2015
).
49.
J. D.
Van der Waals
, “
The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density
,”
J. Stat. Phys.
20
,
200
244
(
1979
).
50.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
,
258
267
(
1958
).
51.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid
,”
J. Chem. Phys.
31
,
688
699
(
1959
).
52.
A. G.
Baydin
,
B. A.
Pearlmutter
,
A. A.
Radul
, and
J. M.
Siskind
, “
Automatic differentiation in machine learning: A survey
,”
J. Mach. Learn. Res.
18
,
1
(
2018
).
53.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
54.
X.
Glorot
and
Y.
Bengio
, “
Understanding the difficulty of training deep feedforward neural networks
,” in
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(
JMLR Workshop and Conference Proceedings
,
2010
), pp.
249
256
.
55.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
 et al, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Advances Neural Information Processing Systems 32
, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Curran Associates, Inc, 2019), Vol. 32; available at https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.
56.
C. L.
Wight
and
J.
Zhao
, “
Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks
,” arXiv:2007.04542 (
2020
).
57.
S. R.
Hysing
,
S.
Turek
,
D.
Kuzmin
,
N.
Parolini
,
E.
Burman
,
S.
Ganesan
, and
L.
Tobiska
, “
Quantitative benchmark computations of two-dimensional bubble dynamics
,”
Int. J. Numer. Methods Fluids
60
,
1259
1288
(
2009
).
58.
S. C.
Dong
and
J.
Shen
, “
A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios
,”
J. Comput. Phys.
231
,
5788
5804
(
2012
).
You do not currently have access to this content.