We report a liquid metal droplet impacting onto a cold substrate under the influence of vertical magnetic field numerically. During the impacting dynamics, the spreading and the solidification of the droplet are seriously influenced by the magnetohydrodynamic effects. The numerical methodology is implemented by coupling the volume of fluid method and the implicit enthalpy approach, the former is used to track the liquid/solid–gas interface, while the latter is employed to simulate the solidification process. At first, the numerical method is validated against a series of benchmark problems. Then, by varying the impacting velocities, the thermal contact resistance and the magnetic strengths, the variations of the maximum spreading diameter against different dimensionless parameters are reported. An interpolation scheme between the impacting effect, the thermal effect, and the magnetohydrodynamic effect is proposed to predict the maximum spreading factor, and very good agreement is observed compared to our numerical results. After that, we identify different impacting behaviors in different parameter regimes. For non-isothermal cases, we find that the solidification makes the droplet transit from full rebound to adhesion on the cold substrate, and the participation of the magnetic field promotes the pinch off phenomena during the retraction of the liquid drop. Mechanisms for the transitions between different impacting regimes are discussed, and the comparisons with the available experimental results and analytical solutions are also delivered. At last, we identify that the thickness growth of the solidified splat can be predicted by solving the simple one-dimensional Stefan problem, implying that the thermal dynamics is dominating over the hydrodynamic or the magnetohydrodynamic effects during the melting process of the spreading droplet. Our work therefore provides a general framework to model and study more complex configurations, such as the droplet impacting problems in the metallurgical industry and Tokamak devices, in which environment the droplet dynamics significantly depend on the non-isothermal magnetohydrodynamic effects.

1.
C. W.
Visser
,
R.
Pohl
,
C.
Sun
,
G.-W.
Römer
,
B.
Huis in 't Veld
, and
D.
Lohse
, “
Toward 3D printing of pure metals by laser-induced forward transfer
,”
Adv. Mater.
27
,
4087
4092
(
2015
).
2.
C.-H.
Wang
,
H.-L.
Tsai
,
Y.-C.
Wu
, and
W.-S.
Hwang
, “
Investigation of molten metal droplet deposition and solidification for 3D printing techniques
,”
J. Micromech. Microeng.
26
,
095012
(
2016
).
3.
S. D.
Aziz
and
S.
Chandra
, “
Impact, recoil and splashing of molten metal droplets
,”
Int. J. Heat Mass Transfer
43
,
2841
2857
(
2000
).
4.
J.
Mostaghimi
,
M.
Pasandideh-Fard
, and
S.
Chandra
, “
Dynamics of splat formation in plasma spray coating process
,”
Plasma Chem. Plasma Process.
22
,
59
84
(
2002
).
5.
M.
Pasandideh-Fard
,
S.
Chandra
, and
J.
Mostaghimi
, “
A three-dimensional model of droplet impact and solidification
,”
Int. J. Heat Mass Transfer
45
,
2229
2242
(
2002
).
6.
N. Z.
Mehdizadeh
,
S.
Chandra
, and
J.
Mostaghimi
, “
Formation of fingers around the edges of a drop hitting a metal plate with high velocity
,”
J. Fluid Mech.
510
,
353
373
(
2004
).
7.
Y.
Shang
,
Y.
Zhang
,
Y.
Hou
,
B.
Bai
, and
X.
Zhong
, “
Effects of surface subcooling on the spreading dynamics of an impact water droplet
,”
Phys. Fluids
32
,
123309
(
2020
).
8.
S.
Molokov
and
C.
Reed
, “
Review of free-surface MHD experiments and modeling
,”
Report No. ANL/TD/TM99-08
(
Argonne National Lab.
,
Lemont, IL
,
2000
).
9.
M.
Pasandideh-Fard
,
Y.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
659
(
1996
).
10.
I. V.
Roisman
,
R.
Rioboo
, and
C.
Tropea
, “
Normal impact of a liquid drop on a dry surface: Model for spreading and receding
,”
Proc. Roy. Soc. London. Ser. A
458
,
1411
1430
(
2002
).
11.
C.
Ukiwe
,
A.
Mansouri
, and
D. Y.
Kwok
, “
The dynamics of impacting water droplets on alkanethiol self-assembled monolayers with co-adsorbed CH3 and Co2H terminal groups
,”
J. Colloid Interface Sci.
285
,
760
768
(
2005
).
12.
J. B.
Lee
,
D.
Derome
,
R.
Guyer
, and
J.
Carmeliet
, “
Modeling the maximum spreading of liquid droplets impacting wetting and nonwetting surfaces
,”
Langmuir
32
,
1299
1308
(
2016
).
13.
N.
Laan
,
K. G.
de Bruin
,
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Maximum diameter of impacting liquid droplets
,”
Phys. Rev. Appl.
2
,
044018
(
2014
).
14.
J.
Eggers
,
M. A.
Fontelos
,
C.
Josserand
, and
S.
Zaleski
, “
Drop dynamics after impact on a solid wall: Theory and simulations
,”
Phys. fluids
22
,
062101
(
2010
).
15.
J.
Zhang
,
T.-Y.
Han
,
J.-C.
Yang
, and
M.-J.
Ni
, “
On the spreading of impacting drops under the influence of a vertical magnetic field
,”
J. Fluid Mech.
809
,
R3
(
2016
).
16.
M. V.
Gielen
,
R.
de Ruiter
,
R. B.
Koldeweij
,
D.
Lohse
,
J. H.
Snoeijer
, and
H.
Gelderblom
, “
Solidification of liquid metal drops during impact
,”
J. Fluid Mech.
883
,
A32
(
2020
).
17.
V.
Thiévenaz
,
T.
Séon
, and
C.
Josserand
, “
Freezing-damped impact of a water drop
,”
EPL (Europhys. Lett.)
132
,
24002
(
2020
).
18.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Retraction dynamics of aqueous drops upon impact on non-wetting surfaces
,”
J. Fluid Mech.
545
,
329
338
(
2005
).
19.
Y.
Renardy
,
S.
Popinet
,
L.
Duchemin
,
M.
Renardy
,
S.
Zaleski
,
C.
Josserand
,
M.
Drumright-Clarke
,
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Pyramidal and toroidal water drops after impact on a solid surface
,”
J. Fluid Mech.
484
,
69
83
(
2003
).
20.
D.
Bartolo
,
F.
Bouamrirene
,
E.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
EPL (Europhys. Lett.)
74
,
299
(
2006
).
21.
Y.-L.
Hung
,
M.-J.
Wang
,
J.-W.
Huang
, and
S.-Y.
Lin
, “
A study on the impact velocity and drop size for the occurrence of entrapped air bubbles–water on parafilm
,”
Exp. Thermal Fluid Sci.
48
,
102
109
(
2013
).
22.
X.
Zhang
,
X.
Liu
,
X.
Wu
, and
J.
Min
, “
Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion
,”
Int. J. Heat Mass Transfer
158
,
119997
(
2020
).
23.
Y.
Wang
,
L.
Ju
,
D.
Han
, and
Q.
Wang
, “
Numerical investigation of the impacting and freezing process of a single supercooled water droplet
,”
Phys. Fluids
33
,
042114
(
2021
).
24.
T.-Y.
Han
,
J.-C.
Yang
,
J.
Zhang
, and
M.-J.
Ni
, “
Three-dimensional numerical simulation on the spreading characteristics of a liquid metal droplet in a horizontal magnetic field
,”
Numer. Heat Transfer, Part A
74
,
1786
1803
(
2018
).
25.
J.-C.
Yang
,
T.-Y.
Qi
,
T.-Y.
Han
,
J.
Zhang
, and
M.-J.
Ni
, “
Elliptical spreading characteristics of a liquid metal droplet impact on a glass surface under a horizontal magnetic field
,”
Phys. Fluids
30
,
012101
(
2018
).
26.
V.
Voller
, “
Fast implicit finite-difference method for the analysis of phase change problems
,”
Numer. Heat Transfer
17
,
155
169
(
1990
).
27.
J.
Zhang
and
M.-J.
Ni
, “
Direct simulation of multi-phase MHD flows on an unstructured Cartesian adaptive system
,”
J. Comput. Phys.
270
,
345
365
(
2014
).
28.
J.
Luo
,
F.
Chu
,
Z.
Ni
,
J.
Zhang
, and
D.
Wen
, “
Dynamics of droplet impacting on a cone
,”
Phys. Fluids
33
,
112116
(
2021
).
29.
V. R.
Voller
,
M.
Cross
, and
N.
Markatos
, “
An enthalpy method for convection/diffusion phase change
,”
Int. J. Numer. Methods Eng.
24
,
271
284
(
1987
).
30.
H.
Shmueli
,
G.
Ziskind
, and
R.
Letan
, “
Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments
,”
Int. J. Heat Mass Transfer
53
,
4082
4091
(
2010
).
31.
J.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
32.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
5866
(
2009
).
33.
S.
Chakraborty
and
P.
Dutta
, “
A generalized formulation for evaluation of latent heat functions in enthalpy-based macroscopic models for convection-diffusion phase change processes
,”
Metallur. Mater. Trans.
32
,
562
(
2001
).
34.
C.
Le Bot
and
E.
Arquis
, “
Numerical study of the solidification of successive thick metal layers
,”
Int. J. Therm. Sci.
48
,
412
420
(
2009
).
35.
M.
Shen
,
B. Q.
Li
,
Q.
Yang
,
Y.
Bai
,
Y.
Wang
,
S.
Zhu
,
B.
Zhao
,
T.
Li
, and
Y.
Hu
, “
A modified phase-field three-dimensional model for droplet impact with solidification
,”
Int. J. Multiphase Flow
116
,
51
66
(
2019
).
36.
S.
Popinet
, “
A quadtree-adaptive multigrid solver for the serre–green–naghdi equations
,”
J. Comput. Phys.
302
,
336
358
(
2015
).
37.
S.
Wu
,
J.
Zhang
,
Q.
Xiao
, and
M.-J.
Ni
, “
Comparison of two interfacial flow solvers: Specific case of a single droplet impacting onto a deep pool
,”
Comput. Math. Appl.
81
,
664
678
(
2021
).
38.
J.
Philippi
,
P.-Y.
Lagrée
, and
A.
Antkowiak
, “
Drop impact on a solid surface: Short-time self-similarity
,”
J. Fluid Mech.
795
,
96
135
(
2016
).
39.
Z.
Jian
,
C.
Josserand
,
S.
Popinet
,
P.
Ray
, and
S.
Zaleski
, “
Two mechanisms of droplet splashing on a solid substrate
,”
J. Fluid Mech.
835
,
1065
1086
(
2018
).
40.
W.
Li
,
J.
Wang
,
C.
Zhu
,
L.
Tian
, and
N.
Zhao
, “
Numerical investigation of droplet impact on a solid superhydrophobic surface
,”
Phys. Fluids
33
,
063310
(
2021
).
41.
M.
Xu
,
W.
Zenghui
,
C.
Zhiyang
, and
Z.
Dengke
, “
Experimental study of gallium droplet impacting on solid wall under the strong magnetic field
,”
Chin. J. Theor. Appl. Mech.
54
,
1
9
(
2022
).
42.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Singular jets and bubbles in drop impact
,”
Phys. Rev. Lett.
96
,
124501
(
2006
).
43.
J.
Guo
,
S.
Zou
,
S.
Lin
,
B.
Zhao
,
X.
Deng
, and
L.
Chen
, “
Oblique droplet impact on superhydrophobic surfaces: Jets and bubbles
,”
Phys. Fluids
32
,
122112
(
2020
).
44.
C. F.
Brasz
,
C. T.
Bartlett
,
P. L.
Walls
,
E. G.
Flynn
,
Y. E.
Yu
, and
J. C.
Bird
, “
Minimum size for the top jet drop from a bursting bubble
,”
Phys. Rev. Fluids
3
,
074001
(
2018
).
45.
J.
San Lee
,
B. M.
Weon
,
S. J.
Park
,
J. H.
Je
,
K.
Fezzaa
, and
W.-K.
Lee
, “
Size limits the formation of liquid jets during bubble bursting
,”
Nat. Commun.
2
,
1
7
(
2011
).
46.
G.-J.
Michon
,
C.
Josserand
, and
T.
Séon
, “
Jet dynamics post drop impact on a deep pool
,”
Phys. Rev. Fluids
2
,
023601
(
2017
).
47.
S.
Zhu
,
A.
Kherbeche
,
Y.
Feng
, and
M.-J.
Thoraval
, “
Impact of an air-in-liquid compound drop onto a liquid surface
,”
Phys. Fluids
32
,
041705
(
2020
).
48.
V.
Thiévenaz
,
T.
Séon
, and
C.
Josserand
, “
Solidification dynamics of an impacted drop
,”
J. Fluid Mech.
874
,
756
773
(
2019
).
49.
F.
Zhang
and
S.
Thoroddsen
, “
Satellite generation during bubble coalescence
,”
Phys. Fluids
20
,
022104
(
2008
).
50.
F.
Blanchette
and
T. P.
Bigioni
, “
Dynamics of drop coalescence at fluid interfaces
,”
J. Fluid Mech.
620
,
333
352
(
2009
).
51.
T.
Gilet
,
K.
Mulleners
,
J.-P.
Lecomte
,
N.
Vandewalle
, and
S.
Dorbolo
, “
Critical parameters for the partial coalescence of a droplet
,”
Phys. Rev. E
75
,
036303
(
2007
).
52.
H.
Ding
,
E.
Li
,
F.
Zhang
,
Y.
Sui
,
P. D.
Spelt
, and
S. T.
Thoroddsen
, “
Propagation of capillary waves and ejection of small droplets in rapid droplet spreading
,”
J. Fluid Mech.
697
,
92
114
(
2012
).
53.
R. F.
Day
,
E. J.
Hinch
, and
J. R.
Lister
, “
Self-similar capillary Pinchoff of an inviscid fluid
,”
Phys. Rev. Lett.
80
,
704
(
1998
).
54.
M.
Bussmann
,
S.
Chandra
, and
J.
Mostaghimi
, “
Modeling the splash of a droplet impacting a solid surface
,”
Phys. Fluids
12
,
3121
3132
(
2000
).
You do not currently have access to this content.