One of the key challenges faced by hypersonic flying is the complex thermal–mechanical–chemical coupling effect between thermal protection materials and non-equilibrium flow environment. Silicon carbide (SiC) has drawn much attention due to its superior physical and chemical characteristics, and its performance under hyperthermal atomic oxygen (AO) impact, however, is still little known. This work investigates the effects of various SiC crystalline polytypes, surface temperature, and crystal orientations on the SiC interface evolution by hyperthermal AO collisions via the reactive molecular dynamics method. The results showed that SiC surface erosion is highly dependent on the temperature and the presence of different interfacial structures. In the range of 500–2000 K, the proceeding of the passive oxidation advances the amorphous SiO2/SiC interface and the formation of SixOy phase weakens the surface catalytic characteristics and mechanical properties. The presence of defects, such as dangling bonds at the gas–solid interface, caused by different surface orientations affects the anti-erosion capabilities of SiC significantly, which may limit its further wide applications.

1.
J.
Wan
,
H.
Zhao
, and
V. Y.
Akkerman
, “
Anchoring mechanisms of a holder-stabilized premixed flame in a preheated mesoscale combustor
,”
Phys. Fluids
32
,
097103
(
2020
).
2.
M.
Marzbali
and
A.
Dolatabadi
, “
High-speed droplet impingement on dry and wetted substrates
,”
Phys. Fluids
32
,
112101
(
2020
).
3.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
, “
Atomic layer etching: Rethinking the art of etch
,”
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
4.
T.
Tsunoura
,
K.
Yoshida
,
T.
Yano
,
T.
Aoki
, and
T.
Ogasawara
, “
Oxidation mechanisms of SiC‐fiber–reinforced Si eutectic alloy matrix composites at elevated temperatures
,”
J. Am. Ceram. Soc.
102
,
6309
(
2019
).
5.
F. L.
Via
,
M.
Camarda
, and
A. L.
Magna
, “
Mechanisms of growth and defect properties of epitaxial SiC
,”
Appl. Phys. Rev.
1
,
031301
(
2014
).
6.
T.
Umeda
,
G.-W.
Kim
,
T.
Okuda
,
M.
Sometani
,
T.
Kimoto
, and
S.
Harada
, “
Interface carbon defects at 4H-SiC (0001)/SiO2 interfaces studied by electron-spin-resonance spectroscopy
,”
Appl. Phys. Lett.
113
,
061605
(
2018
).
7.
V.
Gokul
,
M.
Swapna
,
V.
Raj
,
S. V.
Gratowski
, and
S.
Sankararaman
, “
Development of zinc oxide-multi-walled carbon nanotube hybrid nanofluid for energy-efficient heat transfer application: A thermal lens study
,”
Phys. Fluids
33
,
107108
(
2021
).
8.
T.
Tran-Duc
,
N.
Phan-Thien
, and
J.
Wang
, “
A theoretical study of permeability enhancement for ultrafiltration ceramic membranes with conical pores and slippage
,”
Phys. Fluids
31
,
022003
(
2019
).
9.
A.
Viladegut
and
O.
Chazot
, “
Catalytic characterization in plasma wind tunnels under the influence of gaseous recombination
,”
Phys. Fluids
34
,
027108
(
2022
).
10.
K.
Chen
,
D.
Seo
, and
P.
Canteenwalla
, “
The effect of high-temperature water vapour on degradation and failure of hot section components of gas turbine engines
,”
Coatings
11
,
1061
(
2021
).
11.
D.
Tejero-Martin
,
C.
Bennett
, and
T.
Hussain
, “
A review on environmental barrier coatings: History, current state of the art and future developments
,”
J. Eur. Ceram. Soc.
41
,
1747
(
2021
).
12.
L.
Nuckols
,
M. L.
Crespillo
,
C.
Xu
,
E.
Zarkadoula
,
Y.
Zhang
, and
W. J.
Weber
, “
Coupled effects of electronic and nuclear energy deposition on damage accumulation in ion-irradiated SiC
,”
Acta Mater.
199
,
96
(
2020
).
13.
K. A.
Terrani
,
B. A.
Pint
,
C. M.
Parish
,
C. M.
Silva
,
L. L.
Snead
, and
Y.
Katoh
, “
Silicon carbide oxidation in steam up to 2 MPa
,”
J. Am. Ceram. Soc.
97
,
2331
(
2014
).
14.
R.
Liu
,
B.
Liu
,
K.
Zhang
,
M.
Liu
,
Y.
Shao
, and
C.
Tang
, “
High temperature oxidation behavior of SiC coating in TRISO coated particles
,”
J. Nucl. Mater.
453
,
107
(
2014
).
15.
H.
Katsui
,
M.
Oguma
, and
T.
Goto
, “
Carbon interlayer between CVD SiC and SiO2 in high‐temperature passive oxidation
,”
J. Am. Ceram. Soc.
97
,
1633
(
2014
).
16.
H. V.
Pham
,
Y.
Nagae
,
M.
Kurata
,
D.
Bottomley
, and
K.
Furumoto
, “
Oxidation kinetics of silicon carbide in steam at temperature range of 1400 to 1800° C studied by laser heating
,”
J. Nucl. Mater.
529
,
151939
(
2020
).
17.
T.
Akiyama
,
A.
Ito
,
K.
Nakamura
,
T.
Ito
,
H.
Kageshima
,
M.
Uematsu
, and
K.
Shiraishi
, “
First-principles investigations for oxidation reaction processes at 4H-SiC/SiO2 interface and its orientation dependence
,”
Surf. Sci.
641
,
174
(
2015
).
18.
A.
Ito
,
T.
Akiyama
,
K.
Nakamura
,
T.
Ito
,
H.
Kageshima
,
M.
Uematsu
, and
K.
Shiraishi
, “
First-principles calculations for initial oxidation processes of SiC surfaces: Effect of crystalline surface orientations
,”
Jpn. J. Appl. Phys.
54
,
101301
(
2015
).
19.
W.
Li
,
J.
Zhao
, and
D.
Wang
, “
Structural and electronic properties of the transition layer at the SiO2/4H-SiC interface
,”
AIP Adv.
5
,
017122
(
2015
).
20.
H.
Li
,
Y.-I.
Matsushita
,
M.
Boero
, and
A.
Oshiyama
, “
First-principles calculations that clarify energetics and reactions of oxygen adsorption carbon desorption on 4H-SiC (1120¯) surface
,”
J. Phys. Chem. C
121
,
3920
(
2017
).
21.
T.
Kaneko
,
N.
Tajima
,
T.
Yamasaki
,
J.
Nara
,
T.
Schimizu
,
K.
Kato
, and
T.
Ohno
, “
Hybrid density functional analysis of distribution of carbon-related defect levels at 4H-SiC (0001)/SiO2 interface
,”
Appl. Phys. Express
11
,
011302
(
2018
).
22.
T.
Kobayashi
and
Y.-I.
Matsushita
, “
Structure and energetics of carbon defects in SiC (0001)/SiO2 systems at realistic temperatures: Defects in SiC, SiO2, and at their interface
,”
J. Appl. Phys.
126
,
145302
(
2019
).
23.
X.
Guo
,
R.
Liu
,
J.
Wang
,
S.
Shuai
,
D.
Xiong
,
S.
Bai
,
N.
Zhang
,
X.
Gong
, and
X.
Wang
, “
Pore-scale modeling of wettability effects on infiltration behavior in liquid composite molding
,”
Phys. Fluids
32
,
093311
(
2020
).
24.
N.
Phan
,
N.
Watanabe
,
Y.
Saito
,
S.
Hayashi
,
N.
Katayama
, and
H.
Nagano
, “
Flat-evaporator-type loop heat pipe with hydrophilic polytetrafluoroethylene porous membranes
,”
Phys. Fluids
32
,
047108
(
2020
).
25.
S. Z.
Chavoshi
and
X.
Luo
, “
Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures
,”
Mater. Sci. Eng., A
654
,
400
(
2016
).
26.
A. C.
Van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
,
9396
(
2001
).
27.
S. G.
Srinivasan
,
A. C.
Van Duin
, and
P.
Ganesh
, “
Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene
,”
J. Phys. Chem. A
119
,
571
(
2015
).
28.
C.
Ashraf
and
A. C.
Van Duin
, “
Extension of the ReaxFF combustion force field toward syngas combustion and initial oxidation kinetics
,”
J. Phys. Chem. A
121
,
1051
(
2017
).
29.
Y.
Sun
,
Y.-J.
Liu
, and
F.
Xu
, “
ReaxFF molecular dynamics study on oxidation behavior of 3C-SiC: Polar face effects
,”
Chin. Phys. B
24
,
096203
(
2015
).
30.
V.
Šimonka
,
A.
Hössinger
,
J.
Weinbub
, and
S.
Selberherr
, “
ReaxFF reactive molecular dynamics study of orientation dependence of initial silicon carbide oxidation
,”
J. Phys. Chem. A
121
,
8791
(
2017
).
31.
M. S. J.
Sajib
,
M.
Samieegohar
,
T.
Wei
, and
K.
Shing
, “
Atomic-level simulation study of n-hexane pyrolysis on silicon carbide surfaces
,”
Langmuir
33
,
11102
(
2017
).
32.
W.
Zhang
and
A. C.
Van Duin
, “
Atomistic-scale simulations of the graphene growth on a silicon carbide substrate using thermal decomposition and chemical vapor deposition
,”
Chem. Mater.
32
,
8306
(
2020
).
33.
J.
Xi
,
C.
Liu
, and
I.
Szlufarska
, “
Effects of point defects on oxidation of 3C-SiC
,”
J. Nucl. Mater.
538
,
152308
(
2020
).
34.
Y.
Yang
,
S. A.
Peddakotla
,
R.
Kumar
, and
G.
Park
, “
Effect of argon gas in oxygen catalytic recombination on a silica surface: A reactive molecular dynamics study
,”
Acta Astronaut.
175
,
531
(
2020
).
35.
X.
Chen
,
Z.
Sun
,
Z.
Chen
,
Y.
Song
, and
X.
Niu
, “
ReaxFF molecular dynamics simulation of oxidation behavior of 3C-SiC in O2 and CO2
,”
Comput. Mater. Sci.
191
,
110341
(
2021
).
36.
Y.
Zhang
,
S.
Liang
,
Y.
Zhang
,
R.
Li
,
Z.
Fang
,
S.
Wang
, and
H.
Deng
, “
Role of oxygen in surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures
,”
Ceram. Int.
47
,
1855
(
2021
).
37.
S.
Nachimuthu
,
T.-R.
Chen
,
C.-H.
Yeh
,
L.-S.
Hong
, and
J.-C.
Jiang
, “
Combined density functional theory and microkinetics study to predict optimum operating conditions of Si (100) surface carbonization by acetylene for high power devices
,”
J. Phys. Chem. Lett.
12
,
4558
(
2021
).
38.
Z.
Cui
,
J.
Zhao
,
L.
He
,
H.
Jin
,
J.
Zhang
, and
D.
Wen
, “
A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets
,”
Phys. Fluids
32
,
112110
(
2020
).
39.
Z.
Cui
,
G.
Yao
,
J.
Zhao
,
J.
Zhang
, and
D.
Wen
, “
Atomistic-scale investigations of hyperthermal oxygen–graphene interactions via reactive molecular dynamics simulation: The gas effect
,”
Phys. Fluids
33
,
052107
(
2021
).
40.
Z.
Cui
,
J.
Zhao
,
G.
Yao
,
J.
Zhang
,
Z.
Li
,
Z.
Tang
, and
D.
Wen
, “
Competing effects of surface catalysis and ablation in hypersonic reentry aerothermodynamic environment
,”
Chin. J. Aeronaut.
(Published online 2021).
41.
T.
Park
,
C.
Park
,
J.
Jung
, and
G. J.
Yun
, “
Investigation of silicon carbide oxidation mechanism using ReaxFF molecular dynamics simulation
,”
J. Spacecr. Rockets
57
,
1328
(
2020
).
42.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
43.
A.
Vashisth
,
S.
Khatri
,
S. H.
Hahn
,
W.
Zhang
,
A. C.
Van Duin
, and
M.
Naraghi
, “
Mechanical size effects of amorphous polymer-derived ceramics at the nanoscale: Experiments and ReaxFF simulations
,”
Nanoscale
11
,
7447
(
2019
).
44.
A.
Vashisth
and
M.
Mirsayar
, “
A combined atomistic-continuum study on the temperature effects on interfacial fracture in SiC/SiO2 composites
,”
Theor. Appl. Fract. Mech.
105
,
102399
(
2020
).
45.
Z.
Chen
,
Z.
Sun
,
X.
Chen
,
Y.
Wu
,
X.
Niu
, and
Y.
Song
, “
ReaxFF reactive molecular dynamics study on oxidation behavior of 3C-SiC in H2O and O2
,”
Comput. Mater. Sci.
195
,
110475
(
2021
).
46.
A.
Lohrmann
,
S.
Castelletto
,
J.
Klein
,
T.
Ohshima
,
M.
Bosi
,
M.
Negri
,
D.
Lau
,
B.
Gibson
,
S.
Prawer
, and
J.
McCallum
, “
Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation
,”
Appl. Phys. Lett.
108
,
021107
(
2016
).
47.
S.
Goverapet Srinivasan
and
A. C.
van Duin
, “
Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field
,”
J. Phys. Chem. A
115
,
13269
(
2011
).
48.
Y.
Umeno
,
K.
Yagi
, and
H.
Nagasawa
, “
Ab initio density functional theory calculation of stacking fault energy and stress in 3C‐SiC
,”
Phys. Status Solidi B
249
,
1229
(
2012
).
49.
X.
Liu
,
L.
Cheng
,
L.
Zhang
,
X.
Yin
,
N.
Dong
,
D.
Zhao
,
Z.
Hong
, and
Z.
Li
, “
Erosion behavior of C/SiC composites in atomic oxygen
,”
Int. J. Appl. Ceram. Technol.
10
,
168
(
2013
).
50.
N. S.
Jacobson
and
D. L.
Myers
, “
Active oxidation of SiC
,”
Oxid. Met.
75
,
1
25
(
2011
).
51.
V.
Presser
and
K. G.
Nickel
, “
Silica on silicon carbide
,”
Crit. Rev. Solid State Mater. Sci.
33
,
1
99
(
2008
).
52.
D.
Goto
and
Y.
Hijikata
, “
Unified theory of silicon carbide oxidation based on the Si and C emission model
,”
J. Phys. D: Appl. Phys.
49
,
225103
(
2016
).
53.
D.
Goto
,
Y.
Hijikata
,
S.
Yagi
, and
H.
Yaguchi
, “
Differences in SiC thermal oxidation process between crystalline surface orientations observed by in-situ spectroscopic ellipsometry
,”
J. Appl. Phys.
117
,
095306
(
2015
).
54.
V.
Ivashchenko
,
P.
Turchi
, and
V.
Shevchenko
, “
Simulations of the mechanical properties of crystalline, nanocrystalline, and amorphous SiC and Si
,”
Phys. Rev. B
75
,
085209
(
2007
).
55.
B.
Hähnlein
,
J.
Kovac
, Jr.
, and
J.
Pezoldt
, “
Size effect of the silicon carbide Young's modulus
,”
Phys. Status Solidi A
214
,
1600390
(
2017
).
56.
W.
Chang
and
C.
Zorman
, “
Determination of Young's moduli of 3C (110) single-crystal and (111) polycrystalline silicon carbide from operating frequencies
,”
J. Mater. Sci.
43
,
4512
(
2008
).
57.
S.
Sapienza
,
M.
Ferri
,
L.
Belsito
,
D.
Marini
,
M.
Zielinski
,
F. L.
Via
, and
A.
Roncaglia
, “
Measurement of residual stress and Young's modulus on micromachined monocrystalline 3C-SiC layers grown on ⟨111⟩ and ⟨100⟩ silicon
,”
Micromachines
12
,
1072
(
2021
).
58.
O. T.
Sanya
,
B.
Oji
,
S. S.
Owoeye
, and
E. J.
Egbochie
, “
Influence of particle size and particle loading on mechanical properties of silicon carbide–reinforced epoxy composites
,”
Int. J. Adv. Manuf. Technol.
103
,
4787
(
2019
).
59.
L.
Pastewka
,
A.
Klemenz
,
P.
Gumbsch
, and
M.
Moseler
, “
Screened empirical bond-order potentials for Si–C
,”
Phys. Rev. B
87
,
205410
(
2013
).
60.
C.
Varadachari
,
R.
Bhowmick
, and
K.
Ghosh
, “
Thermodynamics and oxidation behaviour of crystalline silicon carbide (3C) with atomic oxygen and ozone
,”
Int. Scholarly Res. Not.
2012
,
108781
.
61.
J.
Roy
,
S.
Chandra
,
S.
Das
, and
S.
Maitra
, “
Oxidation behaviour of silicon carbide—A review
,”
Rev. Adv. Mater. Sci.
38
,
29
39
(
2014
).
62.
D. J.
Park
,
Y. I.
Jung
,
H. G.
Kim
,
J. Y.
Park
, and
Y. H.
Koo
, “
Oxidation behavior of silicon carbide at 1200 C in both air and water–vapor-rich environments
,”
Corros. Sci.
88
,
416
(
2014
).
You do not currently have access to this content.