We have detected unique hydrodynamic topology in thin air film surrounding the central air dimple formed during drop impact on an immiscible liquid pool. The pattern resembles spinodal and finger-like structures typically found in various thin condensed matter systems. However, similar structures in thin entrapped gas films during drop impacts on solids or liquids have not been reported to date. The thickness profile and the associated dewetting dynamics in the entrapped air layer are investigated experimentally and theoretically using high-speed reflection interferometric imaging and linear stability analysis. We attribute the formation of multi-scale thickness perturbations, associated ruptures, and finger-like protrusions in the draining air film as a combined artifact of thin-film and Saffman–Taylor instabilities. The characteristic length scales depend on the air layer dimensions, the ratio of the liquid pool to droplet viscosity, and the air–water to air–oil surface tension.

1.
E.
Castillo-Orozco
,
A.
Davanlou
,
P. K.
Choudhury
, and
R.
Kumar
, “
Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets
,”
Phys. Rev. E
92
,
053022
(
2015
).
2.
Q.
Ye
and
J.
Domnick
, “
Analysis of droplet impingement of different atomizers used in spray coating processes
,”
J. Coat. Technol. Res.
14
,
467
476
(
2017
).
3.
M.
Epstein
and
H.
Fauske
, “
Applications of the turbulent entrainment assumption to immiscible gas-liquid and liquid-liquid systems
,”
Chem. Eng. Res. Des.
79
,
453
462
(
2001
).
4.
P. D.
Hicks
and
R.
Purvis
, “
Air cushioning and bubble entrapment in three-dimensional droplet impacts
,”
J. Fluid Mech.
649
,
135
163
(
2010
).
5.
P. D.
Hicks
and
R.
Purvis
, “
Air cushioning in droplet impacts with liquid layers and other droplets
,”
Phys. Fluids
23
,
062104
(
2011
).
6.
S.
Thoroddsen
,
T.
Etoh
, and
K.
Takehara
, “
Air entrapment under an impacting drop
,”
J. Fluid Mech.
478
,
125
134
(
2003
).
7.
J. R.
Saylor
and
G. D.
Bounds
, “
Experimental study of the role of the Weber and capillary numbers on Mesler entrainment
,”
AIChE J.
58
,
3841
3851
(
2012
).
8.
S. T.
Thoroddsen
,
M.-J.
Thoraval
,
K.
Takehara
, and
T.
Etoh
, “
Micro-bubble morphologies following drop impacts onto a pool surface
,”
J. Fluid Mech.
708
,
469
479
(
2012
).
9.
J.
de Ruiter
,
F.
Mugele
, and
D.
van den Ende
, “
Air cushioning in droplet impact. I. Dynamics of thin films studied by dual wavelength reflection interference microscopy
,”
Phys. Fluids
27
,
012104
(
2015
).
10.
J.
de Ruiter
,
D.
van den Ende
, and
F.
Mugele
, “
Air cushioning in droplet impact. II. Experimental characterization of the air film evolution
,”
Phys. Fluids
27
,
012105
(
2015
).
11.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
12.
S. D.
Aziz
and
S.
Chandra
, “
Impact, recoil and splashing of molten metal droplets
,”
Int. J. Heat Mass Transfer
43
,
2841
2857
(
2000
).
13.
Y. T.
Aksoy
,
Y.
Zhu
,
P.
Eneren
,
E.
Koos
, and
M. R.
Vetrano
, “
The impact of nanofluids on droplet/spray cooling of a heated surface: A critical review
,”
Energies
14
,
80
(
2020
).
14.
D.
Woolf
,
I.
Leifer
,
P.
Nightingale
,
T.
Rhee
,
P.
Bowyer
,
G.
Caulliez
,
G.
De Leeuw
,
S. E.
Larsen
,
M.
Liddicoat
,
J.
Baker
 et al., “
Modelling of bubble-mediated gas transfer: Fundamental principles and a laboratory test
,”
J. Mar. Syst.
66
,
71
91
(
2007
).
15.
M. H.
Hendrix
,
W.
Bouwhuis
,
D.
van der Meer
,
D.
Lohse
, and
J. H.
Snoeijer
, “
Universal mechanism for air entrainment during liquid impact
,”
J. Fluid Mech.
789
,
708
725
(
2016
).
16.
R. C.
van der Veen
,
T.
Tran
,
D.
Lohse
, and
C.
Sun
, “
Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry
,”
Phys. Rev. E
85
,
026315
(
2012
).
17.
W.
Bouwhuis
,
R. C.
van der Veen
,
T.
Tran
,
D. L.
Keij
,
K. G.
Winkels
,
I. R.
Peters
,
D.
van der Meer
,
C.
Sun
,
J. H.
Snoeijer
, and
D.
Lohse
, “
Maximal air bubble entrainment at liquid-drop impact
,”
Phys. Rev. Lett.
109
,
264501
(
2012
).
18.
A.
Vrij
, “
Possible mechanism for the spontaneous rupture of thin, free liquid films
,”
Discuss. Faraday Soc.
42
,
23
33
(
1966
).
19.
A.
Pereira
,
P.
Trevelyan
,
U.
Thiele
, and
S.
Kalliadasis
, “
Dynamics of a horizontal thin liquid film in the presence of reactive surfactants
,”
Phys. Fluids
19
,
112102
(
2007
).
20.
R.
Konnur
,
K.
Kargupta
, and
A.
Sharma
, “
Instability and morphology of thin liquid films on chemically heterogeneous substrates
,”
Phys. Rev. Lett.
84
,
931
(
2000
).
21.
W. W.
Zhang
and
J. R.
Lister
, “
Similarity solutions for van der Waals rupture of a thin film on a solid substrate
,”
Phys. Fluids
11
,
2454
2462
(
1999
).
22.
R.
Xie
,
A.
Karim
,
J. F.
Douglas
,
C. C.
Han
, and
R. A.
Weiss
, “
Spinodal dewetting of thin polymer films
,”
Phys. Rev. Lett.
81
,
1251
(
1998
).
23.
J.
Bischof
,
D.
Scherer
,
S.
Herminghaus
, and
P.
Leiderer
, “
Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting
,”
Phys. Rev. Lett.
77
,
1536
(
1996
).
24.
U.
Thiele
,
M. G.
Velarde
, and
K.
Neuffer
, “
Dewetting: Film rupture by nucleation in the spinodal regime
,”
Phys. Rev. Lett.
87
,
016104
(
2001
).
25.
P. G.
Saffman
and
G. I.
Taylor
, “
The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid
,”
Proc. R. Soc. London, Ser. A
245
,
312
329
(
1958
).
26.
P.
Tabeling
,
G.
Zocchi
, and
A.
Libchaber
, “
An experimental study of the Saffman-Taylor instability
,”
J. Fluid Mech.
177
,
67
82
(
1987
).
27.
H.
Thome
,
M.
Rabaud
,
V.
Hakim
, and
Y.
Couder
, “
The Saffman–Taylor instability: From the linear to the circular geometry
,”
Phys. Fluids A
1
,
224
240
(
1989
).
28.
Y.
Couder
,
N.
Gerard
, and
M.
Rabaud
, “
Narrow fingers in the Saffman-Taylor instability
,”
Phys. Rev. A
34
,
5175
(
1986
).
29.
G. M.
Homsy
, “
Viscous fingering in porous media
,”
Annu. Rev. Fluid Mech.
19
,
271
311
(
1987
).
30.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
,
671
675
(
2012
).
31.
G.
Van Rossum
and
F. L.
Drake
,
Python 3 Reference Manual
(
CreateSpace
,
Scotts Valley, CA
,
2009
).
32.
K.
Baker
and
G.
Sullivan
, “
Multiple bandpass filters in image processing
,”
IEE Proc. E
127
,
173
184
(
1980
).
33.
A. W.
Setiawan
,
T. R.
Mengko
,
O. S.
Santoso
, and
A. B.
Suksmono
, “
Color retinal image enhancement using CLAHE
,” in
International Conference on ICT for Smart Society
(
IEEE
,
2013
).
34.
D.
Daniel
,
J. V.
Timonen
,
R.
Li
,
S. J.
Velling
, and
J.
Aizenberg
, “
Oleoplaning droplets on lubricated surfaces
,”
Nat. Phys.
13
,
1020
1025
(
2017
).
35.
L.
Limozin
and
K.
Sengupta
, “
Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion
,”
ChemPhysChem
10
,
2752
2768
(
2009
).
36.
M.
Sugiyama
,
H.
Ogawa
,
K.
Kitagawa
, and
K.
Suzuki
, “
Single-shot surface profiling by local model fitting
,”
Appl. Opt.
45
,
7999
8005
(
2006
).
37.
L.
Kai
and
Q.
Kemao
, “
Fast frequency-guided sequential demodulation of a single fringe pattern
,”
Opt. Lett.
35
,
3718
3720
(
2010
).
38.
H.
Wang
and
Q.
Kemao
, “
Frequency guided methods for demodulation of a single fringe pattern
,”
Opt. Express
17
,
15118
15127
(
2009
).
39.
K.
Kitagawa
, “
Thin-film thickness profile measurement by three-wavelength interference color analysis
,”
Appl. Opt.
52
,
1998
2007
(
2013
).
40.
M.
Mendez
,
M.
Balabane
, and
J.-M.
Buchlin
, “
Multi-scale proper orthogonal decomposition of complex fluid flows
,”
J. Fluid Mech.
870
,
988
1036
(
2019
).
41.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
42.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press
,
2011
).
43.
J.
VanderPlas
,
Python Data Science Handbook: Essential Tools for Working with Data
(
O'Reilly Media, Inc
.,
2016
).
44.
L.
Paterson
, “
Radial fingering in a Hele Shaw cell
,”
J. Fluid Mech.
113
,
513
529
(
1981
).

Supplementary Material

You do not currently have access to this content.