We introduce a method to measure the concentration-dependent diffusion coefficient from a sequence of images of molecules diffusing from a source toward a sink. Generally, approaches measuring the diffusion coefficient, such as fluorescence recovery after photobleaching (FRAP), assume that the diffusion coefficient is constant. Hence, these methods cannot capture the concentration dependence of the diffusion coefficient if present. Other approaches measure the concentration-dependent diffusion coefficient from an instantaneous concentration profile and lose the temporal information. These methods make unrealistic assumptions, are not robust, and lead to 100% error. We introduce an image analysis framework that utilizes spatial and temporal information in a sequence of concentration images and numerically solves the general form of Fick's second law using radial basis functions (RBF) to measure the concentration-dependent diffusion coefficient. We term this approach as concentration image diffusimetry (CID). Our method makes no assumptions about the sink and source size and the diffusion dependence on concentration. CID is superior to existing methods in estimating spatiotemporal changes and concentration-dependent diffusion. CID also provides a statistical uncertainty quantification on the measurements using a bootstrapping approach, improving the reliability of the diffusion measurement. We assessed CID's performance using synthetically generated images. Our analysis suggests that CID accurately measures the diffusion coefficient with less than 2% error for most cases. We validated CID with FRAP experimental images and showed that CID agrees with established FRAP algorithms for samples with a constant diffusion coefficient. Finally, we demonstrate the application of CID to experimental datasets of a concentration gradient-driven protein diffusion into a tissue replicate. In conclusion, this work presents an image-based methodology that uses the spatial and temporal changes of concentration fields to measure the concentration-dependent diffusion coefficient.

1.
D.
Lavalette
,
C.
Tétreau
,
M.
Tourbez
, and
Y.
Blouquit
, “
Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment
,”
Biophys. J.
76
(
5
),
2744
2751
(
1999
).
2.
L.
Masaro
and
X. X.
Zhu
, “
Physical models of diffusion for polymer solutions, gels, and solids
,”
Prog. Polymer Sci.
24
(
5
),
731
775
(
1999
).
3.
D.
Hall
and
A. P.
Minton
, “
Macromolecular crowding: Qualitative and semiquantitative successes, quantitative challenges
,”
Biochim. Biophys. Acta (BBA)-Proteins Proteomics
1649
(
2
),
127
139
(
2003
).
4.
Y.
Wang
,
C.
Li
, and
G. J.
Pielak
, “
Effects of proteins on protein diffusion
,”
J. Am. Chem. Soc.
132
(
27
),
9392
9397
(
2010
).
5.
R. J.
Aguerre
,
J. F.
Gabitto
, and
J.
Chirife
, “
Utilization of Fick's second law for the evaluation of diffusion coefficients in food processes controlled by internal diffusion
,”
Int. J. Food Sci. Technol.
20
(
5
),
623
629
(
2007
).
6.
K. H.
Hsu
, “
A diffusion model with a concentration‐dependent diffusion coefficient for describing water movement in legumes during soaking
,”
J. Food Sci.
48
(
2
),
618
622
(
1983
).
7.
H.
Neurath
, “
The investigation of proteins by diffusion measurements
,”
Chem. Rev.
30
(
3
),
357
394
(
1942
).
8.
G. D. J.
Phillies
,
G. B.
Benedek
, and
N. A.
Mazer
, “
Diffusion in protein solutions at high concentrations: A study by quasielastic light scattering spectroscopy
,”
J. Chem. Phys.
65
(
5
),
1883
1892
(
1976
).
9.
L.
Li
,
A.
Kantor
, and
N.
Warne
, “
Application of a PEG precipitation method for solubility screening: A tool for developing high protein concentration formulations
,”
Protein Sci.
22
(
8
),
1118
1123
(
2013
).
10.
J.
Liu
and
S. J.
Shire
,“
Method of reducing viscosity of high concentration protein formulations
,” U.S. Patent 7,666,413, issued February 23,
2010
.
11.
C. M.
Hansen
, “
Measurement of concentration-dependent diffusion coefficients. Exponential case
,”
Ind. Eng. Chem. Fundamentals
6
(
4
),
609
614
(
1967
).
12.
S. K.
Kailasam
,
J. C.
Lacombe
, and
M. E.
Glicksman
, “
Evaluation of the methods for calculating the concentration-dependent diffusivity in binary systems
,”
Metall. Mater. Trans.A
30
(
10
),
2605
2610
(
1999
).
13.
E. L.
Elson
and
D.
Magde
, “
Fluorescence correlation spectroscopy. I. Conceptual basis and theory
,”
Biopolymers
13
(
1
),
1
27
(
1974
).
14.
D.
Magde
,
E. L.
Elson
, and
W. W.
Webb
, “
Fluorescence correlation spectroscopy. II. An experimental realization
,”
Biopolymers
13
(
1
),
29
61
(
1974
).
15.
N. L.
Thompson
, “
Fluorescence correlation spectroscopy
,” in
Topics in Fluorescence Spectroscopy
(
Springer
,
2002
), pp.
337
378
.
16.
R.
Pecora
,
Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy
(
Springer Science & Business Media
,
2013
).
17.
W.
Brown
,
Dynamic Light Scattering: The Method and Some Applications
(
Clarendon Press
Oxford
,
1993
).
18.
B. J.
Berne
and
R.
Pecora
,
Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics
(
Courier Corporation
,
2000
).
19.
R.
Pecora
, “
Dynamic light scattering measurement of nanometer particles in liquids
,”
J. Nanopart. Res.
2
(
2
),
123
131
(
2000
).
20.
M. J.
Rossow
,
J. M.
Sasaki
,
M. A.
Digman
, and
E.
Gratton
, “
Raster image correlation spectroscopy in live cells
,”
Nat. Protoc.
5
(
11
),
1761
(
2010
).
21.
C. M.
Brown
,
R. B.
Dalal
,
B.
Hebert
,
M. A.
Digman
,
A. R.
Horwitz
, and
E.
Gratton
, “
Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope
,”
J. Microsc.
229
(
1
),
78
91
(
2008
).
22.
D. L.
Kolin
and
P. W.
Wiseman
, “
Advances in image correlation spectroscopy: Measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells
,”
Cell Biochem. Biophys.
49
(
3
),
141
164
(
2007
).
23.
A.
Ahmadzadegan
,
A. M.
Ardekani
, and
P. P.
Vlachos
, “
Estimation of the probability density function of random displacements from images
,”
Phys. Rev. E
102
(
3
),
033305
(
2020
).
24.
J.
Beaudouin
,
M. S.
Mommer
,
H. G.
Bock
, and
R.
Eils
, “
Experiment setups and parameter estimation in fluorescence recovery after photobleaching experiments: A review of current practice
,” in
Model Based Parameter Estimation
(
Springer
,
2013
), pp.
157
169
.
25.
D. M.
Soumpasis
, “
Theoretical analysis of fluorescence photobleaching recovery experiments
,”
Biophys. J.
41
(
1
),
95
97
(
1983
).
26.
T. K. L.
Meyvis
,
S. C.
De Smedt
,
P.
Van Oostveldt
, and
J.
Demeester
, “
Fluorescence recovery after photobleaching: A versatile tool for mobility and interaction measurements in pharmaceutical research
,”
Pharm. Res.
16
(
8
),
1153
1162
(
1999
).
27.
L.
Boltzmann
, “
About the integration of the diffusion equation in the case of variable diffusion coefficients
,”
Ann. Phys. Chem.
53
,
959
964
(
1894
).
28.
C.
Matano
, “
On the relation between the diffusion-coefficients and concentrations of solid metals
,”
Jpn.J. Phys.
8
,
109
113
(
1933
).
29.
F. J. A.
Den Broeder
, “
A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems
,”
Scr. Metall.
3
(
5
),
321
325
(
1969
).
30.
J.
Lechelle
,
S.
Noyau
,
L.
Aufore
,
A.
Arredondo
, and
E.
Audubert
, “
Volume interdiffusion coefficient and uncertainty assessment for polycrystalline materials
,”
Diffus. Fundam.
17
(
2
),
1
39
(
2012
).
31.
L. D.
Hall
, “
An analytical method of calculating variable diffusion coefficients
,”
J. Chem. Phys.
21
(
1
),
87
89
(
1953
).
32.
N.
Mai-Duy
and
T.
Tran-Cong
, “
Approximation of function and its derivatives using radial basis function networks
,”
Appl. Math. Modell.
27
(
3
),
197
220
(
2003
).
33.
J. P.
Romano
and
M.
Wolf
, “
Resurrecting weighted least squares
,”
J. Econometrics
197
(
1
),
1
19
(
2017
).
34.
E.
Şimşek
and
M.
Orhan
, “
Heteroskedasticity-consistent covariance matrix estimators in small samples with high leverage points
,”
Theor. Econ. Lett.
06
(
4
),
658
677
(
2016
).
35.
H.
White
, “
A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity
,”
Econometrica
48
,
817
838
(
1980
).
36.
S. D.
Horn
,
R. A.
Horn
, and
D. B.
Duncan
, “
Estimating heteroscedastic variances in linear models
,”
J. Am. Stat. Assoc.
70
(
350
),
380
385
(
1975
).
37.
B.
Efron
, “
Bootstrap methods: Another look at the jackknife
,” in
Breakthroughs in Statistics
(
Springer
,
1992
), pp.
569
593
.
38.
D. N.
Politis
and
J. P.
Romano
, “
Large sample confidence regions based on subsamples under minimal assumptions
,”
Ann. Stat.
22
,
2031
2050
(
1994
).
39.
P.
Jönsson
,
M. P.
Jonsson
,
J. O.
Tegenfeldt
, and
F.
Höök
, “
A method improving the accuracy of fluorescence recovery after photobleaching analysis
,”
Biophys.J.
95
(
11
),
5334
5348
(
2008
).
40.
A.
Einstein
, “
The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat
,”
Ann. Phys.
17
(
8
),
549
560
(
1905
).
41.
M. B.
Mustafa
,
D. L.
Tipton
,
M. D.
Barkley
,
P. S.
Russo
, and
F. D.
Blum
, “
Dye diffusion in isotropic and liquid-crystalline aqueous (hydroxypropyl) cellulose
,”
Macromolecules
26
(
2
),
370
378
(
1993
).
42.
V.
Shenoy
and
J.
Rosenblatt
, “
Diffusion of macromolecules in collagen and hyaluronic acid, rigid-rod-flexible polymer, composite matrixes
,”
Macromolecules
28
(
26
),
8751
8758
(
1995
).
43.
A.
Ahmadzadegan
,
S.
Bhattacharya
,
A. M
Ardekani
, and
P. P.
Vlachos
, “
Uncertainty estimation for ensemble particle image velocimetry
,”
Meas. Sci. Tech
(published online
2022
).
You do not currently have access to this content.