Surface tension-driven microfluidic flows offer low-cost solutions for blood diagnostics due to the pump-less flow handling. Knowledge of the influence of the biomechanical properties of blood on such flows is key to design such devices; however, a systematic examination of that influence is lacking in the literature. We report on the effects of specific hemorheological factors for flows in a superhydrophilic microchannel. Whole human blood and erythrocyte suspensions in phosphate buffer and dextran solutions were tested. Heat-treated counterparts of the aforementioned samples were produced to alter the deformability of the cells. The flow of the samples was imaged and characterized using micro-particle image velocimetry and tracking techniques to probe the effects of hematocrit, and erythrocyte aggregation and deformability. Meniscus velocities, velocity profiles in the channel, and local and bulk shear rates were derived. The mean velocity of blood was affected by the increasing sample viscosity and the reduced erythrocyte deformability as expected. The increased erythrocyte aggregation appeared to affect more the shape of the velocity profiles in the normal, compared to the heat-treated samples. Very high shear rates are observed in the early stages of the flow, suggesting high erythrocyte disaggregation, persisting sufficiently strong until the flow reaches the end of the channel.

1.
E. K.
Sackmann
,
A. L.
Fulton
, and
D. J.
Beebe
, “
The present and future role of microfluidics in biomedical research
,”
Nature
507
,
181
189
(
2014
).
2.
B.
Weigl
,
G.
Domingo
,
P.
Labarre
, and
J.
Gerlach
, “
Towards non- and minimally instrumented, microfluidics-based diagnostic devices
,”
Lab Chip
8
,
1999
2014
(
2008
).
3.
J. H.
Tsui
,
W.
Lee
,
S. H.
Pun
,
J.
Kim
, and
D. H.
Kim
, “
Microfluidics-assisted in vitro drug screening and carrier production
,”
Adv. Drug Delivery Rev.
65
,
1575
1588
(
2013
).
4.
E.
Berthier
and
D. J.
Beebe
, “
Flow rate analysis of a surface tension driven passive micropump
,”
Lab Chip
7
,
1475
1478
(
2007
).
5.
Q.
Zhong
,
H.
Ding
,
B.
Gao
,
Z.
He
, and
Z.
Gu
, “
Advances of microfluidics in biomedical engineering
,”
Adv. Mater. Technol.
4
,
1800663
(
2019
).
6.
C. K.
Chang
,
C. C.
Lai
, and
C. K.
Chung
, “
Numerical analysis and experiments of capillarity-driven microfluid chip
,” in
6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
,
2011
.
7.
C. F.
Kung
,
C. F.
Chiu
,
C. F.
Chen
,
C. C.
Chang
, and
C. C.
Chu
, “
Blood flow driven by surface tension in a microchannel
,”
Microfluid. Nanofluid.
6
,
693
697
(
2009
).
8.
J.
Berthier
 et al., “
Whole blood spontaneous capillary flow in narrow V-groove microchannels
,”
Sens. Actuators, B
206
,
258
267
(
2015
).
9.
D.
Erickson
,
D.
Li
, and
C. B.
Park
, “
Numerical simulations of capillary-driven flows in nonuniform cross-sectional capillaries
,”
J. Colloid Interface Sci.
250
,
422
430
(
2002
).
10.
A. A.
Saha
,
S. K.
Mitra
,
M.
Tweedie
,
S.
Roy
, and
J.
McLaughlin
, “
Experimental and numerical investigation of capillary flow in SU8 and PDMS microchannels with integrated pillars
,”
Microfluid. Nanofluid.
7
,
451
465
(
2009
).
11.
Y. F.
Chen
 et al., “
Surface tension driven flow for open microchannels with different turning angles
,”
Microfluid. Nanofluid.
5
,
193
203
(
2008
).
12.
N.
Ichikawa
,
K.
Hosokawa
, and
R.
Maeda
, “
Interface motion of capillary-driven flow in rectangular microchannel
,”
J. Colloid Interface Sci.
280
,
155
164
(
2004
).
13.
J.
Berthier
 et al., “
On the halt of spontaneous capillary flows in diverging open channels
,”
Med. Eng. Phys.
48
,
75
80
(
2017
).
14.
J.
Berthier
 et al., “
Spontaneous capillary flow in curved, open microchannels
,”
Microfluid. Nanofluid.
20
,
100
(
2016
).
15.
J. J.
Lee
,
J.
Berthier
,
A. B.
Theberge
, and
E.
Berthier
, “
Capillary flow in open microgrooves: Bifurcations and networks
,”
Langmuir
35
,
10667
(
2019
).
16.
D.
Gosselin
 et al., “
Viscoelastic capillary flow: The case of whole blood
,”
AIMS Biophys.
3
,
340
(
2016
).
17.
J.
Wang
,
W.
Huang
,
R. S.
Bhullar
, and
P.
Tong
, “
Modeling of surface-tension-driven flow of blood in capillary tubes
,”
Mech. Chem. Biosyts.
1
,
161
167
(
2004
).
18.
E. M.
Cherry
and
J. K.
Eaton
, “
Shear thinning effects on blood flow in straight and curved tubes
,”
Phys. Fluids
25
,
73104
(
2013
).
19.
N.
Kubochkin
and
T.
Gambaryan-Roisman
, “
Surface force-mediated dynamics of droplets spreading over wetting films
,”
Phys. Fluids
33
,
122107
(
2021
).
20.
J.
Lei
,
Z.
Xu
,
F.
Xin
, and
T. J.
Lu
, “
Dynamics of capillary flow in an undulated tube
,”
Phys. Fluids
33
,
052109
(
2021
).
21.
Y.
Wang
,
B. B.
Nunna
,
N.
Talukder
,
E. E.
Etienne
, and
E. S.
Lee
, “
Blood plasma self-separation technologies during the self-driven flow in microfluidic platforms
,”
Bioengineering
8
,
94
(
2021
).
22.
H.
Sakamoto
,
R.
Hatsuda
,
K.
Miyamura
, and
S.
Sugiyama
, “
Plasma separation PMMA device driven by capillary force controlling surface wettability
,”
Micro Nano Lett.
7
,
64
(
2012
).
23.
M.
Sneha Maria
,
P. E.
Rakesh
,
T. S.
Chandra
, and
A. K.
Sen
, “
Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection
,”
Biomicrofluidics
10
,
054108
(
2016
).
24.
Y. J.
Chang
,
Y. T.
Lin
, and
C. C.
Liao
, “
Chamfer-type capillary stop valve and its microfluidic application to blood typing tests
,”
SLAS Technol.
24
,
188
195
(
2019
).
25.
P.
Dunne
 et al., “
Liquid flow and control without solid walls
,”
Nature
581
,
58–62
(
2020
).
26.
R.
Lima
,
S.
Wada
,
M.
Takeda
,
K. i.
Tsubota
, and
T.
Yamaguchi
, “
In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles
,”
J. Biomech.
40
,
2752
2757
(
2007
).
27.
R.
Lima
,
S.
Wada
,
K. I.
Tsubota
, and
T.
Yamaguchi
, “
Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel
,”
Meas. Sci. Technol.
17
,
797
808
(
2006
).
28.
R.
Lima
 et al., “
Radial dispersion of red blood cells in blood flowing through glass capillaries: The role of hematocrit and geometry
,”
J. Biomech.
41
,
2188
2196
(
2008
).
29.
J. M.
Sherwood
,
J.
Dusting
,
E.
Kaliviotis
, and
S.
Balabani
, “
The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel
,”
Biomicrofluidics
6
,
024119
(
2012
).
30.
J. M.
Sherwood
,
E.
Kaliviotis
,
J.
Dusting
, and
S.
Balabani
, “
Hematocrit, viscosity and velocity distributions of aggregating and non-aggregating blood in a bifurcating microchannel
,”
Biomech. Model. Mechanobiol.
13
,
259
273
(
2014
).
31.
J. M.
Sherwood
,
D.
Holmes
,
E.
Kaliviotis
, and
S.
Balabani
, “
Spatial distributions of red blood cells significantly alter local haemodynamics
,”
PLoS One
9
,
e100473
(
2014
).
32.
E.
Kaliviotis
,
D.
Pasias
,
J. M.
Sherwood
, and
S.
Balabani
, “
Red blood cell aggregate flux in a bifurcating microchannel
,”
Med. Eng. Phys.
48
,
23
30
(
2017
).
33.
E.
Kaliviotis
,
J. M.
Sherwood
, and
S.
Balabani
, “
Partitioning of red blood cell aggregates in bifurcating microscale flows
,”
Sci. Rep.
7
,
44563
(
2017
).
34.
E.
Kaliviotis
,
J. M.
Sherwood
, and
S.
Balabani
, “
Local viscosity distribution in bifurcating microfluidic blood flows
,”
Phys. Fluids
30
,
030706
(
2018
).
35.
M. E.
Haque
,
A.
Matin
,
X.
Wang
, and
M.
Kersaudy-Kerhoas
, “
Effects of syringe pump fluctuations on cell-free layer in hydrodynamic separation microfluidic devices
,”
Phys. Fluids
33
,
073317
(
2021
).
36.
W. H.
Reinhart
,
N. Z.
Piety
, and
S. S.
Shevkoplyas
, “
Influence of red blood cell aggregation on perfusion of an artificial microvascular network
,”
Microcirculation
24
,
e12317
(
2017
).
37.
R.
Mehri
,
J.
Laplante
,
C.
Mavriplis
, and
M.
Fenech
, “
Investigation of blood flow analysis and red blood cell aggregation
,”
J. Med. Biol. Eng.
34
,
469
474
(
2014
).
38.
R.
Mehri
,
C.
Mavriplis
, and
M.
Fenech
, “
Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system
,”
PLoS One
13
,
e0199911
(
2018
).
39.
A.
Passos
 et al., “
The effect of deformability on the microscale flow behavior of red blood cell suspensions
,”
Phys. Fluids
31
,
091903
(
2019
).
40.
B.
Czaja
 et al., “
The influence of red blood cell deformability on hematocrit profiles and platelet margination
,”
PLoS Comput. Biol.
16
,
e1007716
(
2020
).
41.
A. U.
Alam
,
M. M. R.
Howlader
, and
M. J.
Deen
, “
The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass
,”
J. Micromech. Microeng.
24
,
035010
(
2014
).
42.
S.
Luo
and
C. P.
Wong
, “
Effect of UV/ozone treatment on surface tension and adhesion in electronic packaging
,”
IEEE Trans. Compon. Packag. Technol.
24
,
43
49
(
2001
).
43.
I.
Topala
,
N.
Dumitrascu
, and
V.
Pohoata
, “
Influence of plasma treatments on the hemocompatibility of PET and PET + TiO2 films
,”
Plasma Chem. Plasma Process.
28
,
535
551
(
2008
).
44.
H.-M.
Kim
,
S. B.
Seo
,
D. Y.
Kim
,
K.
Bae
, and
S. Y.
S
, “
Enhanced hydrophilic property of TiO2 thin film deposited on glass etched with O2 plasma
,”
Trans. Electr. Electron. Mater.
14
,
152
155
(
2013
).
45.
D.
Pasias
,
A.
Passos
,
G.
Constantinides
,
S.
Balabani
, and
E.
Kaliviotis
, “
Surface tension driven flow of blood in a rectangular microfluidic channel: Effect of erythrocyte aggregation
,”
Phys. Fluids
32
,
071903
(
2020
).
46.
S.
Xue
,
B. K.
Lee
, and
S.
Shin
, “
Disaggregating shear stress: The roles of cell deformability and fibrinogen concentration
,”
Clin. Hemorheol. Microcirc.
55
,
231
240
(
2013
).
47.
O. K.
Baskurt
 et al., “
Comparison of three instruments for measuring red blood cell aggregation
,”
Clin. Hemorheol. Microcirc.
43
,
283
298
(
2009
).
48.
O. K.
Baskurt
 et al., “
Comparison of three commercially available ektacytometers with different shearing geometries
,”
Biorheology
46
,
251
(
2009
).
49.
J. T.
Horobin
,
S.
Sabapathy
, and
M. J.
Simmonds
, “
Red blood cell tolerance to shear stress above and below the subhemolytic threshold
,”
Biomech. Model. Mechanobiol.
19
,
851
860
(
2020
).
50.
J. J. J.
Gillissen
,
A.
Papadopoulou
,
S.
Balabani
,
M. K.
Tiwari
, and
H. J.
Wilson
, “
Suspension rheology of adhesive particles at high shear-rates
,”
Phys. Rev. Fluids
5
,
053302
(
2020
).
51.
L.
La Notte
 et al., “
Airbrush spray coating of amorphous titanium dioxide for inverted polymer solar cells
,”
Int. J. Photoenergy
2012
,
897595
.
52.
R. C.
Suciu
 et al., “
TiO2 thin films prepared by spin coating technique
,”
Rev. Roum. Chim.
56
,
607
612
(
2011
).
53.
D. A.
Bartholomeusz
,
R. W.
Boutté
, and
J. D.
Andrade
, “
Xurography: Rapid prototyping of microstructures using a cutting plotter
,”
J. Microelectromech. Syst.
14
,
1364
1374
(
2005
).
54.
J.
Szekely
,
A. W.
Neumann
, and
Y. K.
Chuang
, “
The rate of capillary penetration and the applicability of the washburn equation
,”
J. Colloid Interface Sci.
35
,
273
278
(
1971
).
55.
K. K.
Kuok
and
P. C.
Chiu
, “
Application of particle image velocimetry (PIV) for measuring water velocity in laboratory sedimentation tank
,”
IRA-Int. J. Technol. Eng.
9
,
16–26
(
2017
).
56.
C.
Poelma
,
A.
Kloosterman
,
B. P.
Hierck
, and
J.
Westerweel
, “
Accurate blood flow measurements: Are artificial tracers necessary?
,”
PLoS One
7
,
e45247
(
2012
).
57.
A.
Bouchama
 et al., “
Classic and exertional heatstroke
,”
Nat. Rev. Dis. Prim.
8
,
8
(
2022
).
58.
A. M.
Nilsson
,
G. W.
Lucassen
,
W.
Verkruysse
,
S.
Andersson-Engels
, and
M. J. C.
van Gemert
, “
Optical properties of human whole blood: changes due to slow heating
,” in
Laser-Tissue Interaction and Tissue Optics II
(
SPIE
,
1996
), Vol.
2923
, pp.
24
34
.
59.
M.
Amin
,
M. A.
Hussain
,
D.
Shahwar
, and
M.
Hussain
, “
Thermal analysis and degradation kinetics of dextran and highly substituted dextran acetates
,”
J. Chem. Soc. Pak.
37
,
673
679
(
2015
).
60.
M. A.
Masuelli
, “
Dextrans in aqueous solution. Experimental review on intrinsic viscosity measurements and temperature effect
,”
J. Polym. Biopolym. Phys. Chem.
2013
,
360239
.
61.
S.
Chien
and
K.
Jan
, “
Ultrastructural basis of the mechanism of rouleaux formation
,”
Microvasc. Res.
5
,
155
166
(
1973
).
62.
H.
Kitamura
 et al., “
Roles of hematocrit and fibrinogen in red cell aggregation determined by ultrasonic scattering properties
,”
Ultrasound Med. Biol.
21
,
827
832
(
1995
).
63.
D.
Lerche
and
H.
Baumler
, “
Moderate heat treatment of only red blood cells (RBC) slows down the rate of RBC-RBC aggregation in plasma
,”
Biorheology
21
,
393
(
1984
).
64.
E. W.
Merrill
,
E. R.
Gilliland
,
T. S.
Lee
, and
E. W.
Salzman
, “
Blood rheology: Effect of fibrinogen deduced by addition
,”
Circ. Res.
18
,
437
(
1966
).
65.
P.
Snabre
,
M.
Bitbol
, and
P.
Mills
, “
Cell disaggregation behavior in shear flow
,”
Biophys. J.
51
,
795
807
(
1987
).
66.
J.
Dupire
,
M.
Socol
, and
A.
Viallat
, “
Full dynamics of a red blood cell in shear flow
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
20808
(
2012
).
67.
N. N.
Firsov
,
A. V.
Priezzhev
, and
O. M.
Ryaboshapka
, “
Study of erythrocyte-aggregation kinetics in shear flow in vitro by light-scattering technique
,” in
Proc. SPIE 1981, Optical Methods of Biomedical Diagnostics and Therapy
(
1993
).
68.
E.
Kaliviotis
and
M.
Yianneskis
, “
Blood viscosity modelling: Influence of aggregate network dynamics under transient conditions
,”
Biorheology
48
(
2
),
127
147
(
2018
).
69.
A. L.
Rakow
and
R. M.
Hochmuth
, “
Effect of heat treatment on the elasticity of human erythrocyte membrane
,”
Biophys. J.
15
,
1095
1100
(
1975
).
70.
G. B.
Nash
and
H. J.
Meiselman
, “
Alteration of red cell membrane viscoelasticity by heat treatment: Effect on cell deformability and suspension viscosity
,”
Biorheology
22
,
73
84
(
1985
).
71.
A.
Sammartano
,
M.
Scarlattei
,
S.
Migliari
,
G.
Baldari
, and
L.
Ruffini
, “
Validation of in vitro labeling method for human use of heat-damage red blood cells to detect splenic tissue and hemocateretic function
,”
Acta Biomed.
90
,
275
280
(
2019
).
72.
M.
Yoshino
and
K.
Murakami
, “
A kinetic study of the inhibition of yeast AMP deaminase by polyphosphate
,”
Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol.
954
,
271
276
(
1988
).
73.
H. L.
Atkins
,
A. G.
Goldman
, and
R. G.
Fairchild
, “
Splenic sequestration of 99mTc labeled, heat treated red blood cells
,”
Radiology
136
,
501
503
(
1980
).
74.
C. J.
Bustamante
,
Y. R.
Chemla
,
S.
Liu
, and
M. D.
Wang
, “
Optical tweezers in single-molecule biophysics
,”
Nat. Rev. Methods Primers
1
,
25
(
2021
).
75.
Z.
Liu
,
H.
Li
, and
Y.
Qiang
, “
Computational modeling of the biomechanics and biorheology of heated red blood cells nature-inspired hierarchical advanced material design view project biology of red blood cells view project
,”
Artic. Biophys. J.
120
(
21
),
4663
4671
(
2021
).
76.
H.
Seidner
,
G.
Gunter
,
S.
Weber-Fishkin
, and
M.
Frame
, “
Erythrocyte aggregation in hyperthermic hypoxic conditions significantly related to self-identified race
,”
FASEB J.
35
,
04035
(
2021
).
77.
J.
Zhou
 et al., “
Isolation of cells from whole blood using shear-induced diffusion
,”
Sci. Rep.
8
,
9411
(
2018
).
78.
M.
Lopez
and
M. D.
Graham
, “
Enhancement of mixing and adsorption in microfluidic devices by shear-induced diffusion and topography-induced secondary flow
,”
Phys. Fluids
20
,
053304
(
2008
).

Supplementary Material

You do not currently have access to this content.