Understanding the origin of the unique rheological properties of wheat gluten, the protein fraction of wheat grain, is crucial in bread-making processes and has raised questions of scientists for decades. Gluten is a complex mixture of two families of proteins, monomeric gliadins and polymeric glutenins. To better understand the respective role of the different classes of proteins in the supramolecular structure of gluten and its link to the material properties, we investigate here concentrated dispersions of gluten proteins in water with a fixed total protein concentration but variable composition in gliadin and glutenin. Linear viscoelasticity measurements show a gradual increase in the viscosity of the samples as the glutenin mass content increases from 7 to 66%. While the gliadin-rich samples are microphase-separated viscous fluids, homogeneous and transparent pre-gel and gels are obtained with the replacement of gliadin by glutenin. To unravel the flow properties of the gluten samples, we perform shear startup experiments at different shear-rates. In accordance with the linear viscoelastic signature, three classes of behavior are evidenced depending on the protein composition. As samples get depleted in gliadin and enriched in glutenin, distinctive features are measured: (i) viscosity undershoot suggesting droplet elongation for microphase-separated dispersions, (ii) stress overshoot and partial structural relaxation for near-critical pre-gels, and (iii) strain hardening and flow instabilities of gels. We discuss the experimental results by analogy with the behavior of model systems, including viscoelastic emulsions, branched polymer melts, and critical gels, and provide a consistent physical picture of the supramolecular features of the three classes of protein dispersions.

1.
C. W.
Wrigley
, “
Giant proteins with flour power
,”
Nature
381
,
738
(
1996
).
2.
J. R.
Biesiekierski
, “
What is gluten?
,”
J. Gastroenterol. Hepatol.
32
,
78
(
2017
).
3.
C.
Wrigley
,
F.
Békés
, and
W.
Bushuk
,
Gluten: A Balance of Gliadin and Glutenin
(
The Unique Balance of Wheat Quality 3
,
Gliadin and Glutenin
,
2006
).
4.
H.
Wieser
, “
Chemistry of gluten proteins
,”
Food Microbiol.
24
,
115
(
2007
).
5.
P.
Shewry
and
A.
Tatham
, “
Disulphide bonds in wheat gluten proteins
,”
J. Cereal Sci.
25
,
207
(
1997
).
6.
A. S.
Tatham
,
L.
Hayes
,
P. R.
Shewry
, and
D. W.
Urry
, “
Wheat seed proteins exhibit a complex mechanism of protein elasticity
,”
Biochim. Biophys. Acta (BBA)
1548
,
187
(
2001
).
7.
C.
Wang
and
J.
Kokini
, “
Prediction of the nonlinear viscoelastic properties of gluten doughs
,”
J. Food Eng.
25
,
297
(
1995
).
8.
C.
Létang
,
M.
Piau
, and
C.
Verdier
, “
Characterization of wheat flour–water doughs. Part I: Rheometry and microstructure
,”
J. Food Eng.
41
,
121
(
1999
).
9.
A.
Redl
,
M. H.
Morel
,
J.
Bonicel
,
S.
Guilbert
, and
B.
Vergnes
, “
Rheological properties of gluten plasticized with glycerol: Dependence on temperature, glycerol content and mixing conditions
,”
Rheol. Acta
38
,
311
(
1999
).
10.
J.
Lefebvre
,
A.
Pruska-Kedzior
,
Z.
Kedzior
, and
L.
Lavenant
, “
A phenomenological analysis of wheat gluten viscoelastic response in retardation and in dynamic experiments over a large time scale
,”
J. Cereal Sci.
38
,
257
(
2003
).
11.
S.
Uthayakumaran
,
M.
Newberry
,
N.
Phan-Thien
, and
R.
Tanner
, “
Small and large strain rheology of wheat gluten
,”
Rheol. Acta
41
,
162
(
2002
).
12.
T. S.
Ng
and
G. H.
McKinley
, “
Power law gels at finite strains: The nonlinear rheology of gluten gels
,”
J. Rheol.
52
,
417
(
2008
).
13.
T. S.
Ng
,
G. H.
McKinley
, and
R. H.
Ewoldt
, “
Large amplitude oscillatory shear flow of gluten dough: A model power-law gel
,”
J. Rheol.
55
,
627
(
2011
).
14.
F.
Chambon
and
H. H.
Winter
, “
Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry
,”
J. Rheol.
31
,
683
(
1987
).
15.
M.-H.
Morel
,
J.
Pincemaille
,
L.
Lecacheux
,
P.
Menut
,
L.
Ramos
, and
A.
Banc
, “
Thermodynamic insights on the liquid-liquid fractionation of gluten proteins in aqueous ethanol
,”
Food Hydrocolloids
123
,
107142
(
2022
).
16.
M.
Dahesh
,
A.
Banc
,
A.
Duri
,
M.-H.
Morel
, and
L.
Ramos
, “
Polymeric assembly of gluten proteins in an aqueous ethanol solvent
,”
J. Phys. Chem. B
118
,
11065
(
2014
).
17.
M.
Dahesh
,
A.
Banc
,
A.
Duri
,
M.-H.
Morel
, and
L.
Ramos
, “
Spontaneous gelation of wheat gluten proteins in a food grade solvent
,”
Food Hydrocolloids
52
,
1
(
2016
).
18.
A.
Banc
,
C.
Charbonneau
,
M.
Dahesh
,
M.-S.
Appavou
,
Z.
Fu
,
M.-H.
Morel
, and
L.
Ramos
, “
Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels
,”
Soft Matter
12
,
5340
(
2016
).
19.
A.
Banc
,
M.
Dahesh
,
M.
Wolf
,
M.-H.
Morel
, and
L.
Ramos
, “
Model gluten gels
,”
J. Cereal Sci.
75
,
175
(
2017
).
20.
L.
Ramos
,
A.
Banc
,
A.
Louhichi
,
J.
Pincemaille
,
J.
Jestin
,
Z.
Fu
,
M.-S.
Appavou
,
P.
Menut
, and
M.-H.
Morel
, “
Impact of the protein composition on the structure and viscoelasticity of polymer-like gluten gels
,”
J. Phys.
33
,
144001
(
2021
).
21.
H. H.
Winter
and
F.
Chambon
, “
Analysis of linear viscoelasticity of a crosslinking polymer at the gel point
,”
J. Rheol.
30
,
367
(
1986
).
22.
J. E.
Martin
,
D.
Adolf
, and
J. P.
Wilcoxon
, “
Viscoelasticity near the sol-gel transition
,”
Phys. Rev. A
39
,
1325
(
1989
).
23.
J. E.
Martin
,
D.
Adolf
, and
J. P.
Wilcoxon
, “
Viscoelasticity of near-critical gels
,”
Phys. Rev. Lett.
61
,
2620
(
1988
).
24.
M.
Muthukumar
, “
Screening effect on viscoelasticity near the gel point
,”
Macromolecules
22
,
4656
(
1989
).
25.
D.
Adolf
and
J. E.
Martin
, “
Time-cure superposition during crosslinking
,”
Macromolecules
23
,
3700
(
1990
).
26.
J. E.
Martin
and
J. P.
Wilcoxon
, “
Critical dynamics of the sol-gel transition
,”
Phys. Rev. Lett.
61
,
373
(
1988
).
27.
S.
Costanzo
,
A.
Banc
,
A.
Louhichi
,
E.
Chauveau
,
B.
Wu
,
M.-H.
Morel
, and
L.
Ramos
, “
Tailoring the viscoelasticity of polymer gels of gluten proteins through solvent quality
,”
Macromolecules
53
,
9470
(
2020
).
28.
M.
Cornec
,
Y.
Popineau
, and
J.
Lefebvre
, “
Characterisation of gluten subfractions by SE-HPLC and dynamic rheological analysis in shear
,”
J. Cereal Sci.
19
,
131
(
1994
).
29.
J.
Xu
,
J. A.
Bietz
, and
C. J.
Carriere
, “
Viscoelastic properties of wheat gliadin and glutenin suspensions
,”
Food Chem.
101
,
1025
(
2007
).
30.
G.
Yazar
,
O. C.
Duvarci
,
S.
Tavman
, and
J. L.
Kokini
, “
LAOS behavior of the two main gluten fractions: Gliadin and glutenin
,”
J. Cereal Sci.
77
,
201
(
2017
).
31.
M.-H.
Morel
,
J.
Pincemaille
,
E.
Chauveau
,
A.
Louhichi
,
F.
Violleau
,
P.
Menut
,
L.
Ramos
, and
A.
Banc
, “
Insight into gluten structure in a mild chaotropic solvent by asymmetrical flow field-flow fractionation (AsFlFFF) and evidence of non-covalent assemblies between glutenin and ω-gliadin
,”
Food Hydrocolloids
103
,
105676
(
2020
).
32.
F.
Snijkers
,
D.
Vlassopoulos
,
H.
Lee
,
J.
Yang
,
T.
Chang
,
P.
Driva
, and
N.
Hadjichristidis
, “
Start-up and relaxation of well-characterized comb polymers in simple shear
,”
J. Rheol.
57
,
1079
(
2013
).
33.
N.
Koumakis
,
M.
Laurati
,
A. R.
Jacob
,
K. J.
Mutch
,
A.
Abdellali
,
A.
Schofield
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Start-up shear of concentrated colloidal hard spheres: Stresses, dynamics, and structure
,”
J. Rheol.
60
,
603
(
2016
).
34.
D.
Gaudino
,
S.
Costanzo
,
G.
Ianniruberto
,
N.
Grizzuti
, and
R.
Pasquino
, “
Linear wormlike micelles behave similarly to entangled linear polymers in fast shear flows
,”
J. Rheol.
64
,
879
(
2020
).
35.
A.
Vananroye
,
P.
Van Puyvelde
, and
P.
Moldenaers
, “
Effect of confinement on droplet breakup in sheared emulsions
,”
Langmuir
22
,
3972
(
2006
).
36.
R.
Benzi
,
T.
Divoux
,
C.
Barentin
,
S.
Manneville
,
M.
Sbragaglia
, and
F.
Toschi
, “
Stress Overshoots in Simple Yield Stress Fluids
,”
Phys. Rev. Lett.
127
,
148003
(
2021
).
37.
P. S.
Stephanou
,
T.
Schweizer
, and
M.
Kröger
, “
Communication: Appearance of undershoots in start-up shear: Experimental findings captured by tumbling-snake dynamics
,”
J. Chem. Phys.
146
,
161101
(
2017
).
38.
S.
Costanzo
,
Q.
Huang
,
G.
Ianniruberto
,
G.
Marrucci
,
O.
Hassager
, and
D.
Vlassopoulos
, “
Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements
,”
Macromolecules
49
,
3925
(
2016
).
39.
C.
Lacroix
,
M.
Grmela
, and
P.
Carreau
, “
Relationships between rheology and morphology for immiscible molten blends of polypropylene and ethylene copolymers under shear flow
,”
J. Rheol.
42
,
41
(
1998
).
40.
M. P.
Lettinga
,
Z.
Dogic
,
H.
Wang
, and
J.
Vermant
, “
Flow behavior of colloidal rodlike viruses in the nematic phase
,”
Langmuir
21
,
8048
(
2005
).
41.
N.
Sato
,
A.
Matsumiya
,
Y.
Higashino
,
S.
Funaki
,
Y.
Kitao
,
Y.
Oba
,
R.
Inoue
,
F.
Arisaka
,
M.
Sugiyama
, and
R.
Urade
, “
Molecular assembly of wheat gliadins into nanostructures: A small-angle X-ray scattering study of gliadins in distilled water over a wide concentration range
,”
J. Agric. Food Chem.
63
,
8715
(
2015
).
42.
J. M.
Dealy
and
R. G.
Larson
,
Structure and Rheology of Molten Polymers
(
Hanser
,
Munich
,
2006
), Vol.
30
.
43.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
Wiley
,
New York
,
1994
).
44.
D.
Graebling
,
R.
Muller
, and
J.
Palierne
, “
Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids
,”
Macromolecules
26
,
320
(
1993
).
45.
I.
Capron
,
S.
Costeux
, and
M.
Djabourov
, “
Water in water emulsions: Phase separation and rheology of biopolymer solutions
,”
Rheol. Acta
40
,
441
(
2001
).
46.
W.
Cox
and
E.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
28
,
619
(
1958
).
47.
W.
Gleissle
,
Two Simple Time-Shear Rate Relations Combining Viscosity and First Normal Stress Coefficient in the Linear and Non-Linear Flow Range
(
Springer
,
1980
).
48.
A.
Boire
,
P.
Menut
,
M-H
Morel
, and
C.
Sanchez
, “
Osmotic compression of anisotropic proteins: Interaction properties and associated structures in wheat gliadin dispersions
,”
J. Phys. Chem. B
119
,
5412
(
2015
).
49.
E.
Narimissa
,
T.
Schweizer
, and
M. H.
Wagner
, “
A constitutive analysis of nonlinear shear flow
,”
Rheol. Acta
59
,
487
(
2020
).
50.
D.
Parisi
,
M.
Kaliva
,
S.
Costanzo
,
Q.
Huang
,
P. J.
Lutz
,
J.
Ahn
,
T.
Chang
,
M.
Rubinstein
, and
D.
Vlassopoulos
, “
Nonlinear rheometry of entangled polymeric rings and ring-linear blends
,”
J. Rheol.
65
,
695
(
2021
).
51.
Y.
Masubuchi
,
D.
Vlassopoulos
,
G.
Ianniruberto
, and
G.
Marrucci
, “
Wall slip in primitive chain network simulations of shear startup of entangled polymers and its effect on the shear stress undershoot
,”
J. Rheol.
65
,
213
(
2021
).
52.
Y.
Masubuchi
,
G.
Ianniruberto
, and
G.
Marrucci
, “
Stress undershoot of entangled polymers under fast startup shear flows in primitive chain network simulations
,”
J. Soc. Rheol. Jpn.
46
,
23
(
2018
).
53.
M. H.
Nafar Sefiddashti
,
B. J.
Edwards
, and
B.
Khomami
, “
Individual molecular dynamics of an entangled polyethylene melt undergoing steady shear flow: Steady-state and transient dynamics
,”
Polymers
11
,
476
(
2019
).
54.
M.
Bousmina
,
M.
Aouina
,
B.
Chaudhry
,
R.
Guénette
, and
R. E.
Bretas
, “
Rheology of polymer blends: Non-linear model for viscoelastic emulsions undergoing high deformation flows
,”
Rheol. Acta
40
,
538
(
2001
).
55.
G.
Marrucci
,
G.
Ianniruberto
,
F.
Bacchelli
, and
S.
Coppola
, “
Unusual nonlinear effects in the rheology of entangled polymer melts
,”
Prog. Theor. Phys. Suppl.
175
,
1
(
2008
).
56.
S.
Coppola
,
F.
Bacchelli
,
G.
Marrucci
, and
G.
Ianniruberto
, “
Rest-time effects in repeated shear-startup runs of branched SBR polymers
,”
J. Rheol.
58
,
1877
(
2014
).
57.
F.
Snijkers
,
D.
Vlassopoulos
,
G.
Ianniruberto
,
G.
Marrucci
,
H.
Lee
,
J.
Yang
, and
T.
Chang
, “
Double stress overshoot in start-up of simple shear flow of entangled comb polymers
,”
ACS Macro Lett.
2
,
601
(
2013
).
58.
R.
Colby
and
M.
Rubinstein
,
Polymer Physics
(
Oxford University
,
New-York
,
2003
), p.
274
.
59.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
New York
,
2003
).
60.
A. A.
Adams
,
M. J.
Solomon
,
R. G.
Larson
, and
X.
Xia
, “
Concentration, salt and temperature dependence of strain hardening of step shear in CTAB/NaSal surfactant solutions
,”
J. Rheol.
61
,
967
(
2017
).
61.
M.
Bouzid
and
E.
Del Gado
, “
Network topology in soft gels: Hardening and softening materials
,”
Langmuir
34
,
773
(
2018
).
62.
J. A.
Åström
,
P. S.
Kumar
,
I.
Vattulainen
, and
M.
Karttunen
, “
Strain hardening, avalanches, and strain softening in dense cross-linked actin networks
,”
Phys. Rev. E
77
,
051913
(
2008
).
63.
C.
Huang
,
Q.
Chen
, and
R.
Weiss
, “
Nonlinear rheology of random sulfonated polystyrene ionomers: The role of the sol–gel transition
,”
Macromolecules
49
,
9203
(
2016
).
You do not currently have access to this content.