Atherosclerosis is an important cause of cardiovascular disease. The wall shear stress (WSS) is one of the key factors of plaque formation and dislodgement. Currently, WSS estimation is based on the measurement of the blood velocity gradient. However, due to the lack of flow field measurements in carotid stenosis vessels, the two distribution forms (parabolic and non-parabolic) commonly considered in numerical simulations could cause WSS estimates to differ by more than 40%, which could seriously affect the accuracy of mechanical analysis. This study applied three-dimensional (3D) printing technology to create an experimental model of real-structure carotid arteries. Microparticle image velocimetry was adopted to comprehensively measure blood velocity field data at the stenosis location, providing experimental validation of numerical simulation (Fluent; finite volume method) results. Then, the flow field was simulated at a normal human heart rate (45–120 beats per minute). The radial sectional velocity exhibited a plateau-like distribution with a similar velocity in the central region (more than 65% of the total channel width). This study provides an accurate understanding of the WSS at the carotid stenosis location and proposes a reliable method for the study of flow fields under various blood flow conditions.

1.
T.
Kawada
, “
Carotid intima-media thickness and cardiovascular risk in patients with diabetes mellitus type 2 and chronic kidney disease
,”
Renal Failure
42
,
314
321
(
2020
).
2.
Y.
Cai
,
X.
Liu
,
L.
Zhang
,
H.
Guo
,
Q.
Gong
, and
F.
Lv
, “
Prevalence and characteristics of atherosclerotic plaque: Left compared with right arteries and anterior compared with posterior circulation stroke
,”
Eur. J. Radiol.
142
,
109862
(
2021
).
3.
Y.
Li
,
Y.
Cai
,
M.
Zhao
, and
J.
Sun
, “
Risk factors between intracranial-extracranial atherosclerosis and anterior-posterior circulation stroke in ischaemic stroke
,”
Neurol Res.
39
,
30
35
(
2017
).
4.
H.
Hong
,
E.
Yeom
,
H. S.
Ji
,
H. D.
Kim
, and
K. C.
Kim
, “
Characteristics of pulsatile flows in curved stenosed channels
,”
PLoS One
12
,
e0186300
(
2017
).
5.
C. G.
Caro
,
J. M.
Fitz-Gerald
, and
R. C.
Schroter
, “
Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis
,”
Proc. R. Soc. London, Ser. B
177
,
109
133
(
1971
).
6.
B. R.
Kwak
,
M.
Bäck
,
M. L.
Bochaton-Piallat
,
G.
Caligiuri
,
M. J. A. P.
Daemen
,
P. F.
Davies
,
I. E.
Hoefer
,
P.
Holvoet
,
H.
Jo
,
R.
Krams
,
S.
Lehoux
,
C.
Monaco
,
S.
Steffens
,
R.
Virmani
,
C.
Weber
,
J. J.
Wentzel
, and
P. C.
Evans
, “
Biomechanical factors in atherosclerosis: Mechanisms and clinical implications
,”
Eur. Heart J.
35
,
3013
3020
(
2014
).
7.
F. M. A.
Box
,
R. J.
van der Geest
,
J.
van der Grond
,
M. J. P.
van Osch
,
A. H.
Zwinderman
,
I. H.
Palm-Meinders
,
J.
Doornbos
,
G.-J.
Blauw
,
M. A.
van Buchem
, and
J. H. C.
Reiber
, “
Reproducibility of wall shear stress assessment with the paraboloid method in the internal carotid artery with velocity encoded MRI in healthy young individuals
,”
J. Magn. Reson. Imaging
26
,
598
605
(
2007
).
8.
R. S.
Reneman
,
T.
Arts
, and
A. P.
Hoeks
, “
Wall shear stress-an important determinant of endothelial cell function and structure-in the arterial system in vivo. Discrepancies with theory
,”
J. Vasc. Res.
43
,
251
269
(
2006
).
9.
P. E.
Gates
,
A.
Gurung
,
L.
Mazzaro
,
K.
Aizawa
,
S.
Elyas
,
W. D.
Strain
,
A. C.
Shore
, and
R.
Shandas
, “
Measurement of wall shear stress exerted by flowing blood in the human carotid artery: Ultrasound doppler velocimetry and echo particle image velocimetry
,”
Ultrasound Med. Biol.
44
,
1392
1401
(
2018
).
10.
F. X.
Zhang
,
C.
Lanning
,
L.
Mazzaro
,
A. J.
Barker
,
P. E.
Gates
,
W. D.
Strain
,
J.
Fulford
,
O. E.
Gosling
,
A. C.
Shore
,
N. G.
Bellenger
,
B.
Rech
,
J. S.
Chen
,
J.
Chen
, and
R.
Shandas
, “
In vitro and preliminary in vivo validation of echo particle image velocimetry in carotid vascular imaging
,”
Ultrasound Med. Biol.
37
,
450
464
(
2011
).
11.
A. B.
Nicolas
,
V. N.
Chuong
,
C. W.
John
, and
J.
Mark
, “
In vitro wall shear stress measurements using interfacial particle image velocimetry (IPIV
),” in 14th
International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
2008
.
12.
Y. G.
Du
,
D. J.
Liu
,
Y. Y.
Shen
,
L.
Zhu
,
X. J.
He
, and
S. P.
Chen
, “
Measurements of wall shear stress for blood vessel and its progress in clinical research (review)
,”
Chin. J. Biomed. Eng.
037
,
593
605
(
2018
).
13.
M.
Rafael
,
H.
Carson
, and
R.
Alejandor
, “
Comparison of 4D flow MRI and particle image velocimetry using an in vitro carotid bifurcation model
,”
Ann. Biomed. Eng.
46
,
2112
2122
(
2018
).
14.
I. A.
Kenneth
,
H.
Prasanna
, and
A. C.
Brent
, “
Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing
,”
Exp. Fluids
58
,
154
(
2017
).
15.
A. L.
DiCarlo
,
D. W.
Holdsworth
, and
T. L.
Poepping
, “
Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry
,”
Med. Eng. Phys.
65
,
8
23
(
2019
).
16.
N. A.
Buchmann
,
C.
Atkinson
,
M. C.
Jeremy
, and
J.
Soria
, “
Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation
,”
Exp. Fluids
50
,
1131
1151
(
2011
).
17.
K. K. L.
Wong
,
D. F.
Wang
,
J. K. L.
Ko
,
J.
Mazumdar
,
T. T.
Le
, and
D.
Ghista
, “
Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures
,”
BioMed. Eng.
16
,
35
(
2017
).
18.
Y.
Lu
, “
Pathological mechanism analysis and clinical application study of atherosclerosis based on hemodynamic
,” Ph.D. thesis (
Shandong University
,
Jinan
,
2020
).
19.
H.
Zhou
,
L.
Niu
,
S.
Li
, and
G.
Lu
, “
CFD and PIV analysis of hemodynamic in vulnerable plaque
,”
Med. J. Wuhan Univ.
38
,
417
422
(
2017
).
20.
F. X.
Yu
,
M. B.
Deng
,
B.
Miu
,
Y. K.
Shi
,
H. Q.
Chen
, and
X.
Li
, “
The comparative study of velocity profiles in carotid artery bifurcation model by numerical simulation calculation and particle imaging velocimetry measurement
,”
J. Luzhou Med. Coll.
32
,
214
217
(
2009
).
21.
Z. R.
Ding
,
K. Q.
Wang
,
J.
Li
, and
X. S.
Cong
, “
Flow field and oscillatory shear stress in a tuning-fork-shaped model of the average human carotid bifurcation
,”
J. Biomech.
34
,
1555
1562
(
2001
).
22.
T.
Tom
,
G.
Tal
, and
P.
John
, “
Practical clinical applications of 3-D printing in cardiovascular surgery
,”
J. Thorac. Dis.
9
,
2792
2797
(
2017
).
23.
Y. J.
Li
,
D. I.
Verrelli
,
Y.
William
,
Q.
Yi
, and
C.
Winton
, “
A pilot validation of CFD model results against PIV observations of haemodynamics in intracranial aneurysms treated with flow-diverting stents
,”
J. Biomech.
100
,
109590
(
2020
).
24.
D.
Azar
,
W. M.
Torres
,
L. A.
Davis
,
T.
Shaw
,
J. F.
Eberth
,
V. B.
Kolachalama
,
S. M.
Lessner
, and
T.
Shazly
, “
Geometric determinants of local hemodynamics in severe carotid artery stenosis
,”
Comput. Biol. Med.
114
,
103436
(
2019
).
25.
C.
Herpel
,
A.
Tasaka
,
S.
Higuchi
,
D.
Finke
,
R.
Kühle
,
K.
Odaka
,
S.
Rues
,
C.
Lux
,
S.
Yamashita
,
P.
Rammelsberg
, and
F. S.
Schwindling
, “
Accuracy of 3D printing compared with milling: A multi-center analysis of try-in dentures
,”
J. Dent.
110
,
103681
(
2021
).
26.
M.
Sehrish
,
F.
Evan
,
P. S.
Solomon
,
G.
Igor
,
K.
Sanjog
,
J.
Sean
, and
C. G.
Jon
, “
3D printing of carotid artery and aortic arch anatomy: Implications for preprocedural planning and carotid stenting
,”
J. Invasive Cardiol.
33
,
E723
E729
(
2021
).
27.
G.
Lin
,
J.
Yin
,
H.
Huang
,
W.
Huang
,
M.
Cai
,
H.
Xiang
, and
X.
Liu
, “
Photocuring kinetics properties of hybrid UV-curing resin for 3D printing
,”
J. Mater. Eng.
47
,
143
150
(
2019
).
28.
D.
Arianna
,
P. M.
Fernández
,
B.
Gordon
,
T.
Gianluca
, and
R.
Marta
, “
3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering
,”
Polymers
10
,
285
(
2018
).
29.
J. Y.
Wang
, “
Computer-aided simulation-based studies on mechanical properties of the materials for blood vessel 3D-printing
,”
Chin. J. Appl. Mech.
6
,
1379
1383
(
2019
).
30.
X. Y.
Liu
,
G.
Ju
, and
M.
Kelimu
, “
CT-based 3D reconstruction of cerebral aneurysm and the hemodynamic characteristics of its blood flow field
,”
J. Interventional Radiol.
25
,
635
639
(
2016
).
31.
R.
Lima
,
S.
Wada
,
M.
Takeda
,
K. I.
Tsubota
, and
T.
Yamaguch
, “
In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit
,”
J. Biomech.
40
,
2752
2757
(
2007
).
32.
Y.
Fu
,
J. H.
Wu
,
J.
Wu
,
R.
Sun
,
Z. R.
Ding
, and
D.
Chen
, “
Micro-PIV measurements of the flow field around cells in flow chamber
,”
J. Hydrodyn.
27
,
562
568
(
2015
).
33.
R. G.
Wise
,
A.
Al-Shafei
,
T. A.
Carpenter
,
L. D.
Hall
, and
L. H.
Huang
, “
Simultaneous measurement of blood and myocardial velocity in the rat heart by phase contrast MRI using sparse q-space sampling
,”
J. Magn. Reson. Imaging
22
,
614
627
(
2005
).
34.
T.
Kawachi
,
R.
Malkin
,
H.
Takahashi
, and
K.
Hiroshige
, “
Prototype of an echo-PIV method for use in underwater nuclear decommissioning inspections
,”
J. Flow Control Meas. Visualization
07
,
28
43
(
2019
).
35.
A.
Kvon
,
Y. H.
Lee
,
T. A.
Cheema
, and
C. W.
Park
, “
Development of dual micro-PIV system for simultaneous velocity measurements: Optical arrangement techniques and application to blood flow measurements
,”
Meas. Sci. Technol.
25
,
075302
(
2014
).
36.
C. S.
Park
,
R.
Song
,
S. H.
King
, and
J.
Lee
, “
Fabrication of artificial arteriovenous fistula and analysis of flow field and shear stress by using μ-PIV technology
,”
J. Mech. Sci. Technol.
30
,
5503
5511
(
2016
).
37.
Y. H.
Zhu
,
M.
Qian
,
L. L.
Niu
,
H.
Zheng
, and
G.
Lu
, “
Measurement method of arterial shear stress of rats model based on ultrasonic particle imaging velocimetry
,”
J. Biomed. Eng.
31
,
1355
1360
(
2014
).
38.
W. T.
Jiang
,
Y. B.
Fan
,
Y. W.
Zou
, and
J. K.
Chen
, “
Numerical study on the influence of a symmetrical stenosis at the carotid sinus on the flow in the carotid bifurcation
,”
Chin. J. Theor. Appl. Mech.
38
,
270
274
(
2006
).
39.
M. M.
Lu
,
Y. Y.
Cui
,
P.
Peng
,
H. Y.
Qiao
,
J. M.
Cai
, and
X. H.
Zhao
, “
Shape and location of carotid atherosclerotic plaque and intraplaque hemorrhage: A high-resolution magnetic resonance imaging study
,”
J. Atheroscler. Thromb.
26
,
720
727
(
2019
).
40.
J. B.
Thomas
,
L.
Antiga
,
S. L.
Che
,
J. S.
Milner
,
D. A. H.
Steinman
,
J. D.
Spence
,
B. K.
Rutt
, and
D. A.
Steinman
, “
Variation in the carotid bifurcation geometry of young versus older adults: Implications for geometric risk of atherosclerosis
,”
Stroke
36
,
2450
2456
(
2005
).
You do not currently have access to this content.