A general methodology is introduced to build conservative numerical models for fluid simulations based on segregated schemes, where mass, momentum, and energy equations are solved by different methods. It is especially designed here for developing new numerical discretizations of the total energy equation and adapted to a thermal coupling with the lattice Boltzmann method (LBM). The proposed methodology is based on a linear equivalence with standard discretizations of the entropy equation, which, as a characteristic variable of the Euler system, allows efficiently decoupling the energy equation with the LBM. To this extent, any LBM scheme is equivalently written under a finite-volume formulation involving fluxes, which are further included in the total energy equation as numerical corrections. The viscous heat production is implicitly considered thanks to the knowledge of the LBM momentum flux. Three models are subsequently derived: a first-order upwind, a Lax–Wendroff, and a third-order Godunov-type schemes. They are assessed on standard academic test cases: a Couette flow, entropy spot and vortex convections, a Sod shock tube, several two-dimensional Riemann problems, and a shock–vortex interaction. Three key features are then exhibited: (1) the models are conservative by construction, recovering correct jump relations across shock waves; (2) the stability and accuracy of entropy modes can be explicitly controlled; and (3) the low dissipation of the LBM for isentropic phenomena is preserved.

1.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
2.
S.
Marié
,
D.
Ricot
, and
P.
Sagaut
, “
Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics
,”
J. Comput. Phys.
228
,
1056
1070
(
2009
).
3.
F.
Schornbaum
and
U.
Rüde
, “
Massively parallel algorithms for the lattice Boltzmann method on nonuniform grids
,”
SIAM J. Sci. Comput.
38
,
C96
C126
(
2016
).
4.
H.
Touil
,
D.
Ricot
, and
E.
Lévêque
, “
Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method
,”
J. Comput. Phys.
256
,
220
233
(
2014
).
5.
H.
Yu
,
S. S.
Girimaji
, and
L.-S.
Luo
, “
Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence
,”
Phys. Rev. E
71
,
016708
(
2005
).
6.
S.
Wilhelm
,
J.
Jacob
, and
P.
Sagaut
, “
A new explicit algebraic wall model for les of turbulent flows under adverse pressure gradient
,”
Flow, Turbul. Combust.
106
,
1
35
(
2021
).
7.
C.
Lin
,
A.
Xu
,
G.
Zhang
, and
Y.
Li
, “
Double-distribution-function discrete Boltzmann model for combustion
,”
Combust. Flame
164
,
137
151
(
2016
).
8.
M.
Tayyab
,
S.
Zhao
,
Y.
Feng
, and
P.
Boivin
, “
Hybrid regularized lattice-Boltzmann modelling of premixed and non-premixed combustion processes
,”
Combust. Flame
211
,
173
184
(
2020
).
9.
P.
Boivin
,
M.
Tayyab
, and
S.
Zhao
, “
Benchmarking a lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?
,”
Phys. Fluids
33
,
071703
(
2021
).
10.
A.
Mazloomi
,
S. S.
Chikatamarla
, and
I. V.
Karlin
, “
Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces
,”
Phys. Rev. E
92
,
023308
(
2015
).
11.
T.
Lafarge
,
P.
Boivin
,
N.
Odier
, and
B.
Cuenot
, “
Improved color-gradient method for lattice Boltzmann modeling of two-phase flows
,”
Phys. Fluids
33
,
082110
(
2021
).
12.
P. J.
Dellar
, “
Moment equations for magnetohydrodynamics
,”
J. Stat. Mech.: Theory Exp.
2009
,
P06003
.
13.
P.
Dellar
, “
Electromagnetic waves in lattice Boltzmann magnetohydrodynamics
,”
Europhys. Lett.
90
,
50002
(
2010
).
14.
X.
He
,
S.
Chen
, and
G. D.
Doolen
, “
A novel thermal model for the lattice Boltzmann method in incompressible limit
,”
J. Comput. Phys.
146
,
282
300
(
1998
).
15.
P. J.
Dellar
, “
An interpretation and derivation of the lattice Boltzmann method using Strang splitting
,”
Comput. Math. Appl.
65
,
129
141
(
2013
).
16.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method: Principles and Practice
(
Springer International Publishing
,
Cham, Switzerland
,
2017
).
17.
Y. H.
Qian
,
D.
D'Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equation
,”
Europhys. Lett.
17
,
479
484
(
1992
).
18.
P.
Lallemand
and
L.-S.
Luo
, “
Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability
,”
Phys. Rev. E
61
,
6546
6562
(
2000
).
19.
X.
Shan
,
X.-F.
Yuan
, and
H.
Chen
, “
Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation
,”
J. Fluid Mech.
550
,
413
(
2006
).
20.
C.
Coreixas
,
B.
Chopard
, and
J.
Latt
, “
Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations
,”
Phys. Rev. E
100
,
033305
(
2019
).
21.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
525
(
1954
).
22.
G.
Wissocq
,
P.
Sagaut
, and
J.-F.
Boussuge
, “
An extended spectral analysis of the lattice Boltzmann method: Modal interactions and stability issues
,”
J. Comput. Phys.
380
,
311
333
(
2019
).
23.
D.
D'Humières
, “
Generalized lattice-Boltzmann equations
,”
Rarefied Gas Dyn.: Theory Simul.
159
,
450
458
(
1994
).
24.
I.
Ginzburg
,
F.
Verhaeghe
, and
D.
D'Humières
, “
Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions
,”
Commun. Comput. Phys.
3
,
427
478
(
2008
).
25.
M.
Geier
,
M.
Schönherr
,
A.
Pasquali
, and
M.
Krafczyk
, “
The cumulant lattice Boltzmann equation in three dimensions: Theory and validation
,”
Comput. Math. Appl.
70
,
507
547
(
2015
).
26.
J.
Latt
and
B.
Chopard
, “
Lattice Boltzmann method with regularized pre-collision distribution functions
,”
Math. Comput. Simul.
72
,
165
168
(
2006
).
27.
O.
Malaspinas
, “
Increasing stability and accuracy of the lattice Boltzmann scheme: Recursivity and regularization
,” arXiv:1505.06900 (
2015
).
28.
C.
Coreixas
,
G.
Wissocq
,
G.
Puigt
,
J.-F.
Boussuge
, and
P.
Sagaut
, “
Recursive regularization step for high-order lattice Boltzmann methods
,”
Phys. Rev. E
96
,
033306
(
2017
).
29.
J.
Jacob
,
O.
Malaspinas
, and
P.
Sagaut
, “
A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for lattice Boltzmann method-based large eddy simulation
,”
J. Turbul.
19
,
1051
1076
(
2018
).
30.
I. V.
Karlin
,
A. N.
Gorban
,
S.
Succi
, and
V.
Boffi
, “
Maximum entropy principle for lattice kinetic equations
,”
Phys. Rev. Lett.
81
,
6
(
1998
).
31.
B. M.
Boghosian
,
J.
Yepez
,
P. V.
Coveney
, and
A.
Wager
, “
Entropic lattice Boltzmann methods
,”
Proc. R. Soc. A
457
,
717
766
(
2001
).
32.
S.
Ansumali
,
I. V.
Karlin
, and
H. C.
Öttinger
, “
Minimal entropic kinetic models for hydrodynamics
,”
Europhys. Lett.
63
,
798
804
(
2003
).
33.
S. S.
Chikatamarla
,
S.
Ansumali
, and
I. V.
Karlin
, “
Entropic lattice Boltzmann models for hydrodynamics in three dimensions
,”
Phys. Rev. Lett.
97
,
010201
(
2006
).
34.
P. C.
Philippi
,
L. A.
Hegele
,
L. O. E.
dos Santos
, and
R.
Surmas
, “
From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models
,”
Phys. Rev. E
73
,
056702
(
2006
).
35.
N.
Frapolli
,
S. S.
Chikatamarla
, and
I. V.
Karlin
, “
Entropic lattice Boltzmann model for compressible flows
,”
Phys. Rev. E
92
,
061301
(
2015
).
36.
N.
Frapolli
, “
Entropic lattice Boltzmann models for thermal and compressible flows
,” Ph.D. thesis (
ETH Zurich
,
2017
).
37.
K. K.
Mattila
,
P. C.
Philippi
, and
L. A.
Hegele
, “
High-order regularization in lattice-Boltzmann equations
,”
Phys. Fluids
29
,
046103
(
2017
).
38.
J.
Latt
,
C.
Coreixas
,
J.
Beny
, and
A.
Parmigiani
, “
Efficient supersonic flow simulations using lattice Boltzmann methods based on numerical equilibria
,”
Philos. Trans. R. Soc. A
378
,
20190559
(
2020
).
39.
D. N.
Siebert
,
L. A.
Hegele
, and
P. C.
Philippi
, “
Lattice Boltzmann equation linear stability analysis: Thermal and athermal models
,”
Phys. Rev. E
77
,
026707
(
2008
).
40.
P. J.
Dellar
, “
Two routes from the Boltzmann equation to compressible flow of polyatomic gases
,”
Prog. Comput. Fluid Dyn.
8
,
84
(
2008
).
41.
Z.
Guo
,
C.
Zheng
,
B.
Shi
, and
T. S.
Zhao
, “
Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model
,”
Phys. Rev. E
75
,
036704
(
2007
).
42.
Q.
Li
,
Y. L.
He
,
Y.
Wang
, and
W. Q.
Tao
, “
Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations
,”
Phys. Rev. E
76
,
056705
(
2007
).
43.
Y.
Feng
,
P.
Sagaut
, and
W.-Q.
Tao
, “
A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices
,”
Comput. Fluids
131
,
45
55
(
2016
).
44.
Y.
Feng
,
P.
Boivin
,
J.
Jacob
, and
P.
Sagaut
, “
Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows
,”
J. Comput. Phys.
394
,
82
99
(
2019
).
45.
X.
Nie
,
X.
Shan
, and
H.
Chen
, “
A lattice-Boltzmann/finite-difference hybrid simulation of transonic flow
,” in
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2009
).
46.
Y.
Li
,
H.
Fan
,
X.
Nie
,
R.
Zhang
,
X.
Shan
,
H.
Chen
,
T. I.-P.
Shih
, and
X.
Chi
, “
Application of a higher order lattice Boltzmann/hybrid method for simulation of compressible viscous flows with curved boundary
,” in
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2009
).
47.
A. F.
Ribeiro
,
B.
Konig
,
D.
Singh
,
E.
Fares
,
R.
Zhang
,
P.
Gopalakrishnan
,
A.
Jammalamadaka
,
Y.
Li
, and
H.
Chen
, “
Buffet simulations with a lattice-Boltzmann based transonic solver
,” in
55th AIAA Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2017
).
48.
F.
Renard
,
Y.
Feng
,
J.-F.
Boussuge
, and
P.
Sagaut
, “
Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows
,”
Comput. Fluids
219
,
104867
(
2021
).
49.
G.
Farag
,
S.
Zhao
,
T.
Coratger
,
P.
Boivin
,
G.
Chiavassa
, and
P.
Sagaut
, “
A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows
,”
Phys. Fluids
32
,
066106
(
2020
).
50.
G.
Farag
,
T.
Coratger
,
G.
Wissocq
,
S.
Zhao
,
P.
Boivin
, and
P.
Sagaut
, “
A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods
,”
Phys. Fluids
33
,
086101
(
2021
).
51.
F.
Renard
,
G.
Wissocq
,
J.-F.
Boussuge
, and
P.
Sagaut
, “
A linear stability analysis of compressible hybrid lattice Boltzmann methods
,”
J. Comput. Phys.
446
,
110649
(
2021
).
52.
S.
Zhao
,
G.
Farag
,
P.
Boivin
, and
P.
Sagaut
, “
Toward fully conservative hybrid lattice Boltzmann methods for compressible flows
,”
Phys. Fluids
32
,
126118
(
2020
).
53.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer
,
Berlin/Heidelberg
,
2009
), pp.
1
724
.
54.
E.
Fares
,
M.
Wessels
,
R.
Zhang
,
C.
Sun
,
N.
Gopalaswamy
,
P.
Roberts
,
J.
Hoch
, and
H.
Chen
, “
Validation of a lattice-Boltzmann approach for transonic and supersonic flow simulations
,” in
52nd Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2014
).
55.
T.
Coratger
,
G.
Farag
,
S.
Zhao
,
P.
Boivin
, and
P.
Sagaut
, “
Large-eddy lattice-Boltzmann modeling of transonic flows
,”
Phys. Fluids
33
,
115112
(
2021
).
56.
T. Y.
Hou
and
P. G.
LeFloch
, “
Why nonconservative schemes converge to wrong solutions: Error analysis
,”
Math. Comput.
62
,
497
530
(
1994
).
57.
S.
Guo
,
Y.
Feng
, and
P.
Sagaut
, “
On the use of conservative formulation of energy equation in hybrid compressible lattice Boltzmann method
,”
Comput. Fluids
219
,
104866
(
2021
).
58.
K.
Xu
,
Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes
(
World Scientific
,
2014
), Vol.
4
.
59.
G.
Farag
,
S.
Zhao
,
G.
Chiavassa
, and
P.
Boivin
, “
Consistency study of Lattice-Boltzmann schemes macroscopic limit
,”
Phys. Fluids
33
,
037101
(
2021
).
60.
S.
Guo
,
Y.
Feng
,
J.
Jacob
,
F.
Renard
, and
P.
Sagaut
, “
An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice
,”
J. Comput. Phys.
418
,
109570
(
2020
).
61.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewy
, “
On the partial difference equations of mathematical physics
,”
IBM J. Res. Dev.
11
,
215
234
(
1967
).
62.
G.
Wissocq
and
P.
Sagaut
, “
Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes
,” arXiv:2104.14217 (
2021
).
63.
S.
Chapman
and
T.
Cowling
,
The Mathematical Theory of Non-Uniform Gases: An account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
(
Cambridge University Press
,
1970
).
64.
P.
Lax
and
B.
Wendroff
, “
Systems of conservation laws
,”
Commun. Pure Appl. Math.
13
,
217
237
(
1960
).
65.
B.
van Leer
, “
On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe
,”
SIAM J. Sci. Stat. Comput.
5
,
1
20
(
1984
).
66.
G.
Strang
, “
On the construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
,
506
517
(
1968
).
67.
H. W.
Liepmann
and
A.
Roshko
,
Elements of Gasdynamics
(
Courier Corporation
,
2001
).
68.
B.-T.
Chu
and
L. S.
Kovásznay
, “
Non-linear interactions in a viscous heat-conducting compressible gas
,”
J. Fluid Mech.
3
,
494
514
(
1958
).
69.
D.
Fabre
,
L.
Jacquin
, and
J.
Sesterhenn
, “
Linear interaction of a cylindrical entropy spot with a shock
,”
Phys. Fluids
13
,
2403
2422
(
2001
).
70.
K. J.
George
and
R.
Sujith
, “
On Chu's disturbance energy
,”
J. Sound Vib.
330
,
5280
5291
(
2011
).
71.
G. A.
Sod
, “
A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
,”
J. Comput. Phys.
27
,
1
31
(
1978
).
72.
C.
Coreixas
and
J.
Latt
, “
Compressible lattice Boltzmann methods with adaptive velocity stencils: An interpolation-free formulation
,”
Phys. Fluids
32
,
116102
(
2020
).
73.
M. H.
Saadat
,
S. A.
Hosseini
,
B.
Dorschner
, and
I. V.
Karlin
, “
Extended lattice Boltzmann model for gas dynamics
,”
Phys. Fluids
33
,
046104
(
2021
).
74.
G. D.
van Albada
,
B.
van Leer
, and
W. W.
Roberts
, Jr.
, “
A comparative study of computational methods in cosmic gas dynamics
,”
Astron. Astrophys.
108
,
76
84
(
1982
).
75.
P. D.
Lax
and
X.-D.
Liu
, “
Solution of two-dimensional Riemann problems of gas dynamics by positive schemes
,”
SIAM J. Sci. Comput.
19
,
319
340
(
1998
).
76.
O.
Inoue
and
Y.
Hattori
, “
Sound generation by shock-vortex interactions
,”
J. Fluid Mech.
380
,
81
116
(
1999
).
77.
D. S.
Dosanjh
and
T. M.
Weeks
, “
Interaction of a starting vortex as well as a vortex street with a traveling shock wave
,”
AIAA J.
3
,
216
223
(
1965
).
You do not currently have access to this content.