In the present study, mesopycnal flows are investigated using direct numerical simulations. In particular, intrusive density- and particle-driven gravity currents in the lock exchange setup are simulated with the high-order finite-difference framework Xcompact3d. To account for the settling velocity of particles, a customized Fick's law for the particle-solution species is used with an additional term incorporating a constant settling velocity proportional to the concentration of particles. A general energy budget equation is presented, for which the energy can migrate across the domain's boundaries. The relevant main features of intrusive gravity currents, such as front velocity, energy exchanges, sedimentation rate, deposit profile, and deposit map are discussed with the comparison between two- and three-dimensional simulations. In particular, the influence of the Grashof number, the interface thickness, the energy exchanges, the sedimentation process, and how the presence of more than one particle fraction may change the flow dynamics are investigated. The results are in good agreement with previous experiments and theoretical work, in particular for the prediction of the front velocity. For the particle-driven case, the suspended mass evolution along with the sedimentation rate suggests the occurrence of three different stages. In the first stage after the lock release, the particle mixture tends to suspend itself due to gravitational forces. Once most of the particle-mixture mass is suspended, the current intrudes while increasing its velocity, reaching its kinetic energy peak. In the last stage, the particles are deposited at a nearly constant sedimentation rate. As a result, the front velocity constantly decelerates.

1.
Z.
He
,
L.
Zhao
,
J.
Chen
,
C.-H.
Yu
, and
E.
Meiburg
, “
Particle-laden gravity currents interacting with stratified ambient water using direct numerical simulations
,”
Environ. Earth Sci.
80
,
732
(
2021
).
2.
E.
Biegert
,
B.
Vowinckel
,
R.
Ouillon
, and
E.
Meiburg
, “
High-resolution simulations of turbidity currents
,”
Prog. Earth Planet. Sci.
4
,
33
(
2017
).
3.
J. J.
Monaghan
, “
Gravity current interaction with interfaces
,”
Annu. Rev. Fluid Mech.
39
,
245
261
(
2007
).
4.
M.
Ungarish
,
An Introduction to Gravity Currents and Intrusions
(
CRC Press
,
2009
).
5.
B. L.
White
and
K. R.
Helfrich
, “
A general description of a gravity current front propagating in a two-layer stratified fluid
,”
J. Fluid Mech.
711
,
545
575
(
2012
).
6.
F. D.
Rooij
,
P.
Linden
, and
S.
Dalziel
, “
Saline and particle-driven interfacial intrusions
,”
J. Fluid Mech.
389
,
303
334
(
1999
).
7.
R.
Lowe
,
P.
Linden
, and
J.
Rottman
, “
A laboratory study of the velocity structure in an intrusive gravity current
,”
J. Fluid Mech.
456
,
33
48
(
2002
).
8.
B.
Sutherland
,
P.
Kyba
, and
M.
Flynn
, “
Intrusive gravity currents in two-layer fluids
,”
J. Fluid Mech.
514
,
327
353
(
2004
).
9.
M.
Ungarish
, “
Intrusive gravity currents in a stratified ambient: Shallow-water theory and numerical results
,”
J. Fluid Mech.
535
,
287
323
(
2005
).
10.
H.-B.
Cheong
,
J.
Kuenen
, and
P.
Linden
, “
The front speed of intrusive gravity currents
,”
J. Fluid Mech.
552
,
1
11
(
2006
).
11.
B. R.
Sutherland
and
J. T.
Nault
, “
Intrusive gravity currents propagating along thin and thick interfaces
,”
J. Fluid Mech.
586
,
109
118
(
2007
).
12.
S.
Ooi
,
G.
Constantinescu
, and
L.
Weber
, “
A numerical study of intrusive compositional gravity currents
,”
Phys. Fluids
19
,
076602
(
2007
).
13.
R. I.
Nokes
,
M. J.
Davidson
,
C. A.
Stepien
,
W. B.
Veale
, and
R. L.
Oliver
, “
The front condition for intrusive gravity currents
,”
J. Hydraul. Res.
46
,
788
801
(
2008
).
14.
A.
Tan
,
D.
Nobes
,
B.
Fleck
, and
M.
Flynn
, “
Gravity currents in two-layer stratified media
,”
Environ. Fluid Mech.
11
,
203
223
(
2011
).
15.
M.
Flynn
,
M.
Ungarish
, and
A.
Tan
, “
Gravity currents in a two-layer stratified ambient: The theory for the steady-state (front condition) and lock-released flows, and experimental confirmations
,”
Phys. Fluids
24
,
026601
(
2012
).
16.
M. A.
Khodkar
,
M.
Nasr-Azadani
, and
E.
Meiburg
, “
Intrusive gravity currents propagating into two-layer stratified ambients: Vorticity modeling
,”
Phys. Rev. Fluids
1
,
044302
(
2016
).
17.
M.
Khodkar
,
M.
Nasr-Azadani
, and
E.
Meiburg
, “
Gravity currents propagating into two-layer stratified fluids: Vorticity-based models
,”
J. Fluid Mech.
844
,
994
1025
(
2018
).
18.
B. R.
Sutherland
,
M. K.
Gingras
,
C.
Knudson
,
L.
Steverango
, and
C.
Surma
, “
Particle-bearing currents in uniform density and two-layer fluids
,”
Phys. Rev. Fluids
3
,
023801
(
2018
).
19.
P. Y.
Julien
,
Erosion and Sedimentation
, 1st ed. (
Cambridge University Press
,
1998
).
20.
P. Y.
Julien
,
Erosion and Sedimentation
, 2nd ed. (
Cambridge University Press
,
2010
).
21.
S.
An
,
P.
Julien
, and
S.
Venayagamoorthy
, “
Numerical simulation of particle-driven gravity currents
,”
Environ. Fluid Mech.
12
,
495
513
(
2012
).
22.
F.
Necker
,
C.
Härtel
,
L.
Kleiser
, and
E.
Meiburg
, “
Mixing and dissipation in particle-driven gravity currents
,”
J. Fluid Mech.
545
,
339
372
(
2005
).
23.
L. F. R.
Espath
,
L. C.
Pinto
,
S.
Laizet
, and
J. H.
Silvestrini
, “
Two- and three-dimensional direct numerical simulation of particle-laden gravity currents
,”
Comput. Geosci.
63
,
9
16
(
2014
).
24.
L. F. R.
Espath
,
L. C.
Pinto
,
S.
Laizet
, and
J. H.
Silvestrini
, “
High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents
,”
Phys. Fluids (1994-present)
27
,
056604
(
2015
).
25.
P.
Bartholomew
,
G.
Deskos
,
R. A.
Frantz
,
F. N.
Schuch
,
E.
Lamballais
, and
S.
Laizet
, “
Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh
,”
SoftwareX
12
,
100550
(
2020
).
26.
S.
Laizet
and
E.
Lamballais
, “
High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy
,”
J. Comput. Phys.
228
,
5989
6015
(
2009
).
27.
S.
Laizet
and
N.
Li
, “
Incompact3d: A powerful tool to tackle turbulence problems with up to o(105) computational cores
,”
Int. J. Numer. Methods Fluids
67
,
1735
1757
(
2011
).
28.
R. A.
Frantz
,
G.
Deskos
,
S.
Laizet
, and
J. H.
Silvestrini
, “
High-fidelity simulations of gravity currents using a high-order finite-difference spectral vanishing viscosity approach
,”
Comput. Fluids
221
,
104902
(
2021
).
29.
E. P.
Francisco
,
L.
Espath
, and
J.
Silvestrini
, “
Direct numerical simulation of bi-disperse particle-laden gravity currents in the channel configuration
,”
Appl. Math. Modell.
49
,
739
(
2017
).
30.
B. A.
Farenzena
and
J. H.
Silvestrini
, “
Linear stability analysis of particle-laden hypopycnal plumes
,”
Phys. Fluids
29
,
124102
(
2017
).
31.
P.
Burns
and
E.
Meiburg
, “
Sediment-laden fresh water above salt water: Nonlinear simulations
,”
J. Fluid Mech.
762
,
156
195
(
2015
).
32.
L. F. R.
Espath
,
A. F.
Sarmiento
,
P.
Vignal
,
B. O. N.
Varga
,
A. M. A.
Cortes
,
L.
Dalcin
, and
V. M.
Calo
, “
Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model
,”
J. Fluid Mech.
797
,
389
430
(
2016
).
33.
F. N.
Schuch
,
L. C.
Pinto
,
J. H.
Silvestrini
, and
S.
Laizet
, “
Three-dimensional turbulence-resolving simulations of the plunge phenomenon in a tilted channel
,”
J. Geophys. Res.
123
,
4820
4832
, (
2018
).
34.
F. N.
Schuch
,
E.
Meiburg
, and
J. H.
Silvestrini
, “
Plunging criterion for particle-laden flows over sloping bottoms: Three-dimensional turbulence-resolving simulations
,”
Comput. Geosci.
156
,
104880
(
2021
).
You do not currently have access to this content.