The acoustic analogy is adopted to reconstruct the sound generated by a system consisting of a hydrofoil and a downstream propeller. The data from high-fidelity large-eddy simulations with the hydrofoil at angles of incidence of 0°,10°, and 20° were generated using a cylindrical grid consisting of 1.7 × 109 points. The results of the analysis demonstrate the following: (i) the strong influence by the incidence of the hydrofoil on the acoustic signature of the system; (ii) the leading role of the non-linear component of sound at small radial coordinates in the vicinity of the wake, especially moving away from the propeller plane; (iii) the leading role of the linear component of sound from the surface of the propeller moving away along the radial direction; (iv) the importance of the shear between the wakes shed by the hydrofoil and the propeller in accelerating the process of instability of the coherent structures and reinforcing the non-linear sources of sound; and (v) the strong, complex directivity of sound at small radial coordinates, as a consequence of the interaction between the wakes from the hydrofoil and the propeller.

1.
S.
Vakili
,
A.
Ölcer
, and
F.
Ballini
, “
The development of a policy framework to mitigate underwater noise pollution from commercial vessels
,”
Mar. Policy
118
,
104004
(
2020
).
2.
G.
Tani
,
M.
Viviani
,
M.
Felli
,
F.
Lafeber
,
T.
Lloyd
,
B.
Aktas
,
M.
Atlar
,
S.
Turkmen
,
H.
Seol
,
J.
Hallander
, and
N.
Sakamoto
, “
Noise measurements of a cavitating propeller in different facilities: Results of the round robin test programme
,”
Ocean Eng.
213
,
107599
(
2020
).
3.
S.
Ianniello
and
E. De
Bernardis
, “
Farassat's formulations in marine propeller hydroacoustics
,”
Int. J. Aeroacoust.
14
,
87
103
(
2015
).
4.
S.
Ianniello
, “
The Ffowcs-Williams–Hawkings equation for hydroacoustic analysis of rotating blades. Part I. The rotpole
,”
J. Fluid Mech.
797
,
345
388
(
2016
).
5.
S.
Ianniello
,
R.
Muscari
, and
A.
Di Mascio
, “
Ship underwater noise assessment by the acoustic analogy. Part I: Nonlinear analysis of a marine propeller in a uniform flow
,”
J. Mar. Sci. Technol. (Jpn.)
18
,
547
570
(
2013
).
6.
S.
Ianniello
,
R.
Muscari
, and
A.
Di Mascio
, “
Ship underwater noise assessment by the Acoustic Analogy part II: Hydroacoustic analysis of a ship scaled model
,”
J. Mar. Sci. Technol. (Jpn.)
19
,
52
74
(
2014
).
7.
M.
Felli
,
R.
Camussi
, and
F.
Di Felice
, “
Mechanisms of evolution of the propeller wake in the transition and far fields
,”
J. Fluid Mech.
682
,
5
53
(
2011
).
8.
M.
Felli
and
M.
Falchi
, “
Propeller wake evolution mechanisms in oblique flow conditions
,”
J. Fluid Mech.
845
,
520
559
(
2018
).
9.
M.
Felli
, “
Underlying mechanisms of propeller wake interaction with a wing
,”
J. Fluid Mech.
908
,
A10
(
2021
).
10.
H.
Seol
,
B.
Jung
,
J.-C.
Suh
, and
S.
Lee
, “
Prediction of non-cavitating underwater propeller noise
,”
J. Sound Vib.
257
,
131
156
(
2002
).
11.
F.
Salvatore
and
S.
Ianniello
, “
Preliminary results on acoustic modelling of cavitating propellers
,”
Comput. Mech.
32
,
291
300
(
2003
).
12.
J. E.
Ffowcs-Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. London, Ser. A
264
,
321
342
(
1969
).
13.
M.
Lighthill
, “
On sound generated aerodynamically. I. General theory
,”
Proc. R. Soc. London, Ser. A
211
,
564
587
(
1952
).
14.
H.
Seol
,
J.-C.
Suh
, and
S.
Lee
, “
Development of hybrid method for the prediction of underwater propeller noise
,”
J. Sound Vib.
288
,
345
360
(
2005
).
15.
C.
Testa
,
S.
Ianniello
,
F.
Salvatore
, and
M.
Gennaretti
, “
Numerical approaches for hydroacoustic analysis of marine propellers
,”
J. Ship Res.
52
,
57
70
(
2008
).
16.
K.
Belibassakis
and
G.
Politis
, “
Generation and propagation of noise from cavitating marine propellers
,” in
Proceedings of the Sixth International Symposium on Marine Propulsors (SMP)
,
Rome, Italy
, May
2019
.
17.
A.
Ebrahimi
,
M.
Seif
, and
A.
Nouri-Borujerdi
, “
Hydrodynamic and acoustic performance analysis of marine propellers by combination of panel method and FW-H equations
,”
Math. Comput. Appl.
24
,
81
(
2019
).
18.
T.
Lampe
,
L.
Radtke
,
M.
Abdel-Maksoud
, and
A.
Düster
, “
A partitioned solution approach for the simulation of dynamic behaviour and acoustic signature of flexible cavitating marine propellers
,”
Ocean Eng.
197
,
106854
(
2020
).
19.
A.
Lidtke
,
S.
Turnock
, and
V.
Humphrey
, “
Use of acoustic analogy for marine propeller noise characterisation
,” in
Proceedings of the Fourth International Symposium on Marine Propulsors (SMP)
,
Austin, TX
, June
2015
.
20.
A.
Lidtke
,
V.
Humphrey
, and
S.
Turnock
, “
Feasibility study into a computational approach for marine propeller noise and cavitation modelling
,”
Ocean Eng.
120
,
152
159
(
2016
).
21.
S.
Sezen
and
O.
Kinaci
, “
Incompressible flow assumption in hydroacoustic predictions of marine propellers
,”
Ocean Eng.
186
,
106138
(
2019
).
22.
V.
Sravani
,
S.
Srinivas Prasad
,
R.
Teja
, and
K.
Ramanaiah
, “
Acoustic analysis of ship propeller using CFD
,”
Int. J. Ambient Energy
(published online
2020
).
23.
M.
Raghebi
,
M.
Keshtan
,
M.
Jafarian
, and
M.
Bagheri
, “
Numerical study and acoustic analysis of propeller and hull surface vessel in self-propulsion mode
,”
Ships Offshore Struct.
(published online
2021
).
24.
A.
Razaghian
,
A.
Ebrahimi
,
F.
Zahedi
,
M.
Javanmardi
, and
M.
Seif
, “
Investigating the effect of geometric parameters on hydrodynamic and hydro-acoustic performances of submerged propellers
,”
Appl. Ocean Res.
114
,
102773
(
2021
).
25.
S.
Sezen
,
T.
Cosgun
,
A.
Yurtseven
, and
M.
Atlar
, “
Numerical investigation of marine propeller underwater radiated noise using acoustic analogy part 1: The influence of grid resolution
,”
Ocean Eng.
220
,
108448
(
2021
).
26.
S.
Sezen
,
T.
Cosgun
,
A.
Yurtseven
, and
M.
Atlar
, “
Numerical investigation of marine propeller underwater radiated noise using acoustic analogy part 2: The influence of eddy viscosity turbulence models
,”
Ocean Eng.
220
,
108353
(
2021
).
27.
R.
Muscari
,
A. Di
Mascio
, and
R.
Verzicco
, “
Modeling of vortex dynamics in the wake of a marine propeller
,”
Comput. Fluids
73
,
65
79
(
2013
).
28.
M.
Cianferra
,
A.
Petronio
, and
V.
Armenio
, “
Hydrodynamic noise from a propeller in open sea condition
,”
in Technology and Science for the Ships of the Future
(
IOS Press Ebooks
,
2018
), pp.
149
156
.
29.
M.
Cianferra
,
A.
Petronio
, and
V.
Armenio
, “
Non-linear noise from a ship propeller in open sea condition
,”
Ocean Eng.
191
,
106474
(
2019
).
30.
M.
Cianferra
and
V.
Armenio
, “
Scaling properties of the Ffowcs-Williams and Hawkings equation for complex acoustic source close to a free surface
,”
J. Fluid Mech.
927
,
A2
(
2021
).
31.
J.
Hu
,
X.
Ning
,
W.
Zhao
,
F.
Li
,
J.
Ma
,
W.
Zhang
,
S.
Sun
,
M.
Zou
, and
C.
Lin
, “
Numerical simulation of the cavitating noise of contra-rotating propellers based on detached eddy simulation and the Ffowcs-Williams–Hawkings acoustics equation
,”
Phys. Fluids
33
,
115117
(
2021
).
32.
J.
Keller
,
P.
Kumar
, and
K.
Mahesh
, “
Examination of propeller sound production using large eddy simulation
,”
Phys. Rev. Fluids
3
,
064601
(
2018
).
33.
P.
Di Francescantonio
, “
A new boundary integral formulation for the prediction of sound radiation
,”
J. Sound Vib.
202
,
491
509
(
1997
).
34.
R.
Bensow
and
M.
Liefvendahl
, “
An acoustic analogy and scale-resolving flow simulation methodology for the prediction of propeller radiated noise
,” in
Proceedings of the 31st Symposium on Naval Hydrodynamics
, Monterey, CA, 11–16 September 2016.
35.
J.
Kimmerl
,
P.
Mertes
, and
M.
Abdel-Maksoud
, “
Application of large eddy simulation to predict underwater noise of marine propulsors. Part 2: Noise generation
,”
J. Mar. Sci. Eng.
9
,
778
(
2021
).
36.
C.
Stark
and
W.
Shi
, “
Hydroacoustic and hydrodynamic investigation of bio-inspired leading-edge tubercles on marine-ducted thrusters
,”
R. Soc. Open Sci.
8
,
210402
(
2021
).
37.
M.
Özden
,
A.
Gürkan
,
Y.
Özden
,
T.
Canyurt
, and
E.
Korkut
, “
Underwater radiated noise prediction for a submarine propeller in different flow conditions
,”
Ocean Eng.
126
,
488
500
(
2016
).
38.
A.
Lidtke
,
T.
Lloyd
, and
G.
Vaz
, “
Acoustic modelling of a propeller subject to non-uniform inflow
,” in
Proceedings of the Sixth International Symposium on Marine Propulsors (SMP)
,
Rome, Italy
, May
2019
.
39.
F.
Salvatore
,
C.
Testa
, and
L.
Greco
, “
Coupled hydrodynamics-hydroacoustics BEM modelling of marine propellers operating in a wakefield
,” in
Proceedings of the First International Symposium on Marine Propulsors (SMP)
,
Trondheim, Norway
, June
2009
.
40.
A.
Posa
,
R.
Broglia
,
M.
Felli
,
M.
Falchi
, and
E.
Balaras
, “
Characterization of the wake of a submarine propeller via large-eddy simulation
,”
Comput. Fluids
184
,
138
152
(
2019
).
41.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
LES study of the wake features of a propeller in presence of an upstream rudder
,”
Comput. Fluids
192
,
104247
(
2019
).
42.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow Turbul. Combust.
62
,
183
200
(
1999
).
43.
E.
Balaras
, “
Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations
,”
Comput. Fluids
33
,
375
404
(
2004
).
44.
J.
Yang
and
E.
Balaras
, “
An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries
,”
J. Comput. Phys.
215
,
12
40
(
2006
).
45.
J. J. I. M.
Van Kan
, “
A second-order accurate pressure-correction scheme for viscous incompressible flow
,”
SIAM J. Sci. Stat. Comput.
7
,
870
891
(
1986
).
46.
T.
Rossi
and
J.
Toivanen
, “
A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension
,”
SIAM J. Sci. Comput.
20
,
1778
1793
(
1999
).
47.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
Flow over a hydrofoil in the wake of a propeller
,”
Comput. Fluids
213
,
104714
(
2020
).
48.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
The wake structure of a propeller operating upstream of a hydrofoil
,”
J. Fluid Mech.
904
,
A12
(
2020
).
49.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
Instability of the tip vortices shed by an axial-flow turbine in uniform flow
,”
J. Fluid Mech.
920
,
A19
(
2021
).
50.
A.
Posa
,
R.
Broglia
, and
E.
Balaras
, “
The wake flow downstream of a propeller-rudder system
,”
Int. J. Heat Fluid Flow
87
,
108765
(
2021
).
51.
A.
Posa
and
R.
Broglia
, “
Characterization of the turbulent wake of an axial-flow hydrokinetic turbine via large-eddy simulation
,”
Comput. Fluids
216
,
104815
(
2021
).
52.
A.
Posa
and
R.
Broglia
, “
Flow over a hydrofoil at incidence immersed within the wake of a propeller
,”
Phys. Fluids
33
,
125108
(
2021
).
53.
A.
Posa
and
R.
Broglia
, “
Momentum recovery downstream of an axial-flow hydrokinetic turbine
,”
Renewable Energy
170
,
1275
1291
(
2021
).
54.
A.
Posa
, “
Analysis of momentum recovery within the near wake of a cross-flow turbine using large eddy simulation
,”
Comput. Fluids
231
,
105178
(
2021
).
55.
A.
Posa
, “
LES investigation on the dependence of the flow through a centrifugal pump on the diffuser geometry
,”
Int. J. Heat Fluid Flow
87
,
108750
(
2021
).
56.
A.
Posa
, “
LES study on the influence of the diffuser inlet angle of a centrifugal pump on pressure fluctuations
,”
Int. J. Heat Fluid Flow
89
,
108804
(
2021
).
57.
A.
Posa
, “
Secondary flows in the wake of a vertical axis wind turbine of solidity 0.5 working at a tip speed ratio of 2.2
,”
J. Wind Eng. Ind. Aerodyn.
213
,
104621
(
2021
).
58.
M.
Felli
and
M.
Falchi
, “
A parametric survey of propeller wake instability mechanisms by detailed flow measurement and time resolved visualizations
,” in
Proceedings of the 32nd Symposium on Naval Hydrodynamics
, Hamburg, Germany, 5–10 August 2018.
59.
I.
Orlanski
, “
A simple boundary condition for unbounded hyperbolic flows
,”
J. Comput. Phys.
21
,
251
269
(
1976
).
60.
M.
Felli
,
S.
Grizzi
, and
M.
Falchi
, “
A novel approach for the isolation of the sound and pseudo-sound contributions from near-field pressure fluctuation measurements: Analysis of the hydroacoustic and hydrodynamic perturbation in a propeller-rudder system
,”
Exp. Fluids
55
,
1651
(
2014
).
61.
M.
Felli
,
G.
Guj
, and
R.
Camussi
, “
Effect of the number of blades on propeller wake evolution
,”
Exp. Fluids
44
,
409
418
(
2008
).
62.
A.
Powell
, “
Theory of vortex sound
,”
J. Acoust. Soc. Am.
36
,
177
195
(
1964
).
63.
M.
Felli
,
M.
Falchi
, and
G.
Dubbioso
, “
Experimental approaches for the diagnostics of hydroacoustic problems in naval propulsion
,”
Ocean Eng.
106
,
1
19
(
2015
).
You do not currently have access to this content.