A detailed analysis of the structure of turbulence in a temporal planar turbulent jet is reported. Instantaneous snapshots of the flow and three-dimensional spatial correlation functions are considered. It is found that the flow is characterized by large-scale spanwise vortices whose motion is felt in the entire flow field. Superimposed to this large-scale motion, a hierarchy of turbulent structures is present. The most coherent ones take the form of quasi-streamwise vortices and high and low streamwise velocity streaks. The topology of these interacting structures is analyzed by quantitatively addressing their shape and size in the different flow regions. Such information is recognized to be relevant for a structural description of the otherwise disorganized motion in turbulent free-shear flows and can be used for the assessment of models based on coherent structure assumptions. Finally, the resulting scenario provides a phenomenological description of the elementary processes at the basis of turbulence in free-shear flows.

1.
P.
Holmes
,
J. L.
Lumley
,
G.
Berkooz
, and
C. W.
Rowley
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge university Press
,
2012
).
2.
P. E.
Dimotakis
,
R. C.
Miake-Lye
, and
D. A.
Papantoniou
, “
Structure and dynamics of round turbulent jets
,”
Phys. Fluids
26
,
3185
3192
(
1983
).
3.
A. E.
Perry
and
D. K. M.
Tan
, “
Simple three-dimensional vortex motions in coflowing jets and wakes
,”
J. Fluid Mech.
141
,
197
231
(
1984
).
4.
D.
Liepmann
and
M.
Gharib
, “
The role of streamwise vorticity in the near-field entrainment of round jets
,”
J. Fluid Mech.
245
,
643
668
(
1992
).
5.
S.
Cannon
,
F.
Champagne
, and
A.
Glezer
, “
Observations of large-scale structures in wakes behind axisymmetric bodies
,”
Exp. Fluids
14
,
447
450
(
1993
).
6.
C. B.
da Silva
,
R. J. N.
Dos Reis
, and
J. C. F.
Pereira
, “
The intense vorticity structures near the turbulent/non-turbulent interface in a jet
,”
J. Fluid Mech.
685
,
165
(
2011
).
7.
J.
Philip
and
I.
Marusic
, “
Large-scale eddies and their role in entrainment in turbulent jets and wakes
,”
Phys. Fluids
24
,
055108
(
2012
).
8.
C. B.
da Silva
,
J. C. R.
Hunt
,
I.
Eames
, and
J.
Westerweel
, “
Interfacial layers between regions of different turbulence intensity
,”
Annu. Rev. Fluid Mech.
46
,
567
590
(
2014
).
9.
K. R.
Sreenivasan
,
R.
Ramshankar
, and
C.
Meneveau
, “
Mixing, entrainment and fractal dimensions of surfaces in turbulent flows
,”
Proc. R. Soc. London, Ser. A
421
,
79
108
(
1989
).
10.
A. K. M. F.
Hussain
, “
Coherent structures and turbulence
,”
J. Fluid Mech.
173
,
303
356
(
1986
).
11.
C. B.
da Silva
and
R. J. N.
dos Reis
, “
The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet
,”
Philos. Trans. R. Soc., A
369
,
738
753
(
2011
).
12.
T.
Watanabe
,
R.
Jaulino
,
R. R.
Taveira
,
C. B.
da Silva
,
K.
Nagata
, and
Y.
Sakai
, “
Role of an isolated eddy near the turbulent/non-turbulent interface layer
,”
Phys. Rev. Fluids
2
,
094607
(
2017
).
13.
A.
Cimarelli
and
G.
Boga
, “
Numerical experiments on turbulent entrainment and mixing of scalars
,”
J. Fluid Mech.
927
,
A34
(
2021
).
14.
L. K.
Su
and
N. T.
Clemens
, “
The structure of fine-scale scalar mixing in gas-phase planar turbulent jets
,”
J. Fluid Mech.
488
,
1–29
(
2003
).
15.
C. B.
da Silva
, “
The behavior of subgrid-scale models near the turbulent/nonturbulent interface in jets
,”
Phys. Fluids
21
,
081702
(
2009
).
16.
C. B.
da Silva
,
D. C.
Lopes
, and
V.
Raman
, “
The effect of subgrid-scale models on the entrainment of a passive scalar in a turbulent planar jet
,”
J. Turbl.
16
,
342
366
(
2015
).
17.
C. B.
da Silva
and
O.
Mètais
, “
On the influence of coherent structures upon interscale interactions in turbulent plane jets
,”
J. Fluid Mech.
473
,
103
145
(
2002
).
18.
C. B.
da Silva
and
O.
Métais
, “
Vortex control of bifurcating jets: A numerical study
,”
Phys. Fluids
14
,
3798
3819
(
2002
).
19.
H.
Choi
,
W.-P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
139
(
2008
).
20.
J.
Jiménez
, “
A spanwise structure in the plane shear layer
,”
J. Fluid Mech.
132
,
319
336
(
1983
).
21.
L. P.
Bernal
and
A.
Roshko
, “
Streamwise vortex structures in plane mixing layers
,”
J. Fluid Mech.
170
,
499
525
(
1986
).
22.
P.
Nogueira
,
A.
Cavalieri
,
P.
Jordan
, and
V.
Jaunet
, “
Large-scale streaky structures in turbulent jets
,”
J. Fluid Mech.
873
,
211
237
(
2019
).
23.
K.
Sasaki
and
M.
Kiya
, “
Three-dimensional vortex structure in a leading-edge separation bubble at moderate Reynolds numbers
,”
J. Fluids Eng.
113
,
405
410
(
1991
).
24.
M.
Kiya
and
K.
Sasaki
, “
Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble
,”
J. Fluid Mech.
154
,
463
491
(
1985
).
25.
J. C.
Lasheras
and
H.
Choi
, “
Three-dimensional instability of a plane free shear layer: An experimental study of the formation and evolution of streamwise vortices
,”
J. Fluid Mech.
189
,
53
86
(
1988
).
26.
A.
Cimarelli
,
A.
Leonforte
, and
D.
Angeli
, “
On the structure of the self-sustaining cycle in separating and reattaching flows
,”
J. Fluid Mech.
857
,
907
936
(
2018
).
27.
J.
Craske
and
M.
van Reeuwijk
, “
Energy dispersion in turbulent jets. Part 1. Direct simulation of steady and unsteady jets
,”
J. Fluid Mech.
763
,
500
537
(
2015
).
28.
R. W. C. P.
Verstappen
and
A. E. P.
Veldman
, “
Symmetry-preserving discretization of turbulent flows
,”
J. Comput. Phys.
187
,
343
368
(
2003
).
29.
M.
van Reeuwijk
and
M.
Holzner
, “
The turbulence boundary of a temporal jet
,”
J. Fluid Mech.
739
,
254
275
(
2014
).
30.
C. B.
da Silva
and
J. C. F.
Pereira
, “
Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets
,”
Phys. Fluids
20
,
055101
(
2008
).
31.
A.
Cimarelli
,
J.-P.
Mollicone
,
M.
van Reeuwijk
, and
E.
De Angelis
, “
Spatially evolving cascades in temporal planar jets
,”
J. Fluid Mech.
910
,
A19
(
2021
).
32.
R. D.
Moser
and
M. M.
Rogers
, “
Mixing transition and the cascade to small scales in a plane mixing layer
,”
Phys. Fluids A
3
,
1128
1134
(
1991
).
33.
P. E.
Dimotakis
, “
The mixing transition in turbulent flows
,”
J. Fluid Mech.
409
,
69
98
(
2000
).
34.
A.
Attili
and
F.
Bisetti
, “
Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250
,”
Phys. Fluids
24
,
035109
(
2012
).
35.
J.
Sillero
,
J.
Jiménez
, and
R.
Moser
, “
Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to
δ+2000,”
Phys. Fluids
26
,
105109
(
2014
).
36.
G.
Balamurugan
,
A.
Rodda
,
J.
Philip
, and
A. C.
Mandal
, “
Characteristics of the turbulent non-turbulent interface in a spatially evolving turbulent mixing layer
,”
J. Fluid Mech.
894
,
A4
(
2020
).
37.
P.
Brancher
,
J. M.
Chomaz
, and
P.
Huerre
, “
Direct numerical simulations of round jets: Vortex induction and side jets
,”
Phys. Fluids
6
,
1768
1774
(
1994
).
38.
J.
Kantharaju
,
R.
Courtier
,
B.
Leclaire
, and
L.
Jacquin
, “
Interactions of large-scale structures in the near field of round jets at high Reynolds numbers
,”
J. Fluid Mech.
888
,
A8
(
2020
).
You do not currently have access to this content.