Although the mobility or transport parameters, such as lift drag and pitching moments for regular-shaped particulates, are widely studied, the mobility of irregular fractal-like aggregates generated by the aggregation of monomers is not well understood. These particulates which are ubiquitous in nature, and industries have very different transport mechanisms as compared to their spherical counterpart. A high-fidelity direct simulation Monte Carlo (DSMC) study of two fractal aggregates of different shapes or dimensions is undertaken in the slip and transitional gas regime to understand the underlying mechanism of gas-particle momentum transfer that manifests as the orientation-averaged mobility parameters of the particulates. The study specifically focuses on the viscous contribution of these parameters and develops a non-linear correlation for drag and lift parameters p and q obtained from DSMC by normalizing the axial and lateral forces. The drag parameter p predicted a monotonic increase in fractal particulate drag with respect to a spherical monomer while the lift parameter q shows an initial increasing trend but a decreasing tendency toward the high Mach number or high compressibility regime. The approximate model that captures the compressibility and rarefaction effects of the fractal mobility is used to study the evolution of these particulates in a canonical Rankine vortex to illustrate the wide disparity in the trajectories of the fractal aggregate vs a spherical geometry approximation generally found in the literature.

1.
B.
Wang
,
D.
Xu
,
K.
Chu
, and
A.
Yu
, “
Numerical study of gas–solid flow in a cyclone separator
,”
Appl. Math. Modell.
30
,
1326
1342
(
2006
).
2.
Y.
Zhang
,
B. R.
Lawn
,
E. D.
Rekow
, and
V. P.
Thompson
, “
Effect of sandblasting on the long-term performance of dental ceramics
,”
J. Biomed. Mater. Res., Part B
71
,
381
386
(
2004
).
3.
A.
Lyngfelt
,
B.
Leckner
, and
T.
Mattisson
, “
A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion
,”
Chem. Eng. Sci.
56
,
3101
3113
(
2001
).
4.
T. I.
Lekas
,
J.
Kushta
,
S.
Solomos
, and
G.
Kallos
, “
Some considerations related to flight in dusty conditions
,”
J. Aerosp. Oper.
3
,
45
56
(
2014
).
5.
D. S.
McKay
,
G.
Heiken
,
A.
Basu
,
G.
Blanford
,
S.
Simon
,
R.
Reedy
,
B. M.
French
, and
J.
Papike
, “
The lunar regolith
,” in
Lunar Sourcebook
(
Citeseer
,
1991
), Vol.
7
, pp.
285
356
.
6.
A. K.
Chinnappan
,
R.
Kumar
, and
V. K.
Arghode
, “
Modeling of dusty gas flows due to plume impingement on a lunar surface
,”
Phys. Fluids
33
,
053307
(
2021
).
7.
A. B.
Morris
,
D. B.
Goldstein
,
P. L.
Varghese
, and
L. M.
Trafton
, “
Approach for modeling rocket plume impingement and dust dispersal on the moon
,”
J. Spacecr. Rockets
52
,
362
374
(
2015
).
8.
A. K.
Chinnappan
and
R.
Kumar
, “
Modeling of high speed gas-granular flow over a 2D cylinder in the direct simulation Monte-Carlo framework
,”
Granular Matter
18
,
35
(
2016
).
9.
G. G.
Stokes
 et al.,
On the Effect of the Internal Friction of Fluids on the Motion of Pendulums
(
Cambridge University Press
,
1851
).
10.
A. B.
Basset
, “
III. On the motion of a sphere in a viscous liquid
,”
Philos. Trans. R. Soc. London, Ser. A
179
,
43
63
(
1888
).
11.
R.
Clift
and
W.
Gauvin
, “
Motion of entrained particles in gas streams
,”
Can. J. Chem. Eng.
49
,
439
448
(
1971
).
12.
C.
Crowe
,
W.
Babcock
, and
P.
Willoughby
, “
Drag coefficient for particles in rarefied, low Mach–number flows
,” in
Proceedings of the International Symposium on Two-Phase Systems
(
Elsevier
,
1972
), pp.
419
431
.
13.
C. B.
Henderson
, “
Drag coefficients of spheres in continuum and rarefied flows
,”
AIAA J.
14
,
707
708
(
1976
).
14.
P. A.
Chambre
and
S. A.
Schaaf
,
Flow of Rarefied Gases
(
Princeton University Press
,
2017
).
15.
S.
Tao
,
H.
Zhang
, and
Z.
Guo
, “
Drag correlation for micro spherical particles at finite Reynolds and Knudsen numbers by lattice Boltzmann simulations
,”
J. Aerosol Sci.
103
,
105
116
(
2017
).
16.
E.
Loth
,
J.
Tyler Daspit
,
M.
Jeong
,
T.
Nagata
, and
T.
Nonomura
, “
Supersonic and hypersonic drag coefficients for a sphere
,”
AIAA J.
59
,
3261
3274
(
2021
).
17.
N.
Singh
,
M.
Kroells
,
C.
Li
,
E.
Ching
,
M.
Ihme
,
C. J.
Hogan
, and
T. E.
Schwartzentruber
, “
General drag coefficient for flow over spherical particles
,”
AIAA J.
60
,
587
597
(
2022
).
18.
G. I.
Taylor
, “
The motion of ellipsoidal particles in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
103
,
58
61
(
1923
).
19.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
102
,
161
179
(
1922
).
20.
R.
Ouchene
,
M.
Khalij
,
A.
Tanière
, and
B.
Arcen
, “
Drag, lift and torque coefficients for ellipsoidal particles: From low to moderate particle Reynolds numbers
,”
Comput. Fluids
113
,
53
64
(
2015
).
21.
M.
Zastawny
,
G.
Mallouppas
,
F.
Zhao
, and
B.
Van Wachem
, “
Derivation of drag and lift force and torque coefficients for non-spherical particles in flows
,”
Int. J. Multiphase Flow
39
,
227
239
(
2012
).
22.
C.
Livi
,
G.
Di Staso
,
H. J.
Clercx
, and
F.
Toschi
, “
Drag and lift coefficients of ellipsoidal particles under rarefied flow conditions
,”
Phys. Rev. E
105
,
015306
(
2022
).
23.
A. K.
Chinnappan
,
R.
Kumar
,
V. K.
Arghode
, and
R. S.
Myong
, “
Transport dynamics of an ellipsoidal particle in free molecular gas flow regime
,”
Phys. Fluids
31
,
037104
(
2019
).
24.
A. K.
Chinnappan
,
R.
Kumar
,
V. K.
Arghode
,
K. K.
Kammara
, and
D. A.
Levin
, “
Correlations for aerodynamic coefficients for prolate spheroids in the free molecular regime
,”
Comput. Fluids
223
,
104934
(
2021
).
25.
S. K.
Sanjeevi
,
J.
Kuipers
, and
J. T.
Padding
, “
Drag, lift and torque correlations for non-spherical particles from stokes limit to high Reynolds numbers
,”
Int. J. Multiphase Flow
106
,
325
337
(
2018
).
26.
B. J.
Connolly
,
E.
Loth
, and
C. F.
Smith
, “
Shape and drag of irregular angular particles and test dust
,”
Powder Technol.
363
,
275
285
(
2020
).
27.
C.
Sorensen
, “
The mobility of fractal aggregates: A review
,”
Aerosol Sci. Technol.
45
,
765
779
(
2011
).
28.
A.
Filippov
, “
Drag and torque on clusters of N arbitrary spheres at low Reynolds number
,”
J. Colloid Interface Sci.
229
,
184
195
(
2000
).
29.
G.
Bossis
,
A.
Meunier
, and
J.
Brady
, “
Hydrodynamic stress on fractal aggregates of spheres
,”
J. Chem. Phys.
94
,
5064
5070
(
1991
).
30.
A.
Gastaldi
and
M.
Vanni
, “
The distribution of stresses in rigid fractal-like aggregates in a uniform flow field
,”
J. Colloid Interface Sci.
357
,
18
30
(
2011
).
31.
W.
Van Saarloos
, “
On the hydrodynamic radius of fractal aggregates
,”
Physica A
147
,
280
296
(
1987
).
32.
P.
Chan
and
B.
Dahneke
, “
Free-molecule drag on straight chains of uniform spheres
,”
J. Appl. Phys.
52
,
3106
3110
(
1981
).
33.
R.
Nakamura
,
Y.
Kitada
, and
T.
Mukai
, “
Gas drag forces on fractal aggregates
,”
Planet. Space Sci.
42
,
721
726
(
1994
).
34.
D. W.
Mackowski
, “
Monte carlo simulation of hydrodynamic drag and thermophoresis of fractal aggregates of spheres in the free-molecule flow regime
,”
J. Aerosol Sci.
37
,
242
259
(
2006
).
35.
C.
Zhang
,
T.
Thajudeen
,
C.
Larriba
,
T. E.
Schwartzentruber
, and
C. J.
Hogan
, Jr.
, “
Determination of the scalar friction factor for nonspherical particles and aggregates across the entire Knudsen number range by Direct Simulation Monte Carlo (DSMC)
,”
Aerosol Sci. Technol.
46
,
1065
1078
(
2012
).
36.
G. A.
Bird
and
J.
Brady
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
), Vol.
5
.
37.
R.
Jambunathan
and
D. A.
Levin
, “
CHAOS: An octree-based PIC-DSMC code for modeling of electron kinetic properties in a plasma plume using MPI-CUDA parallelization
,”
J. Comput. Phys.
373
,
571
604
(
2018
).
38.
C. S.
Peskin
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
,
252
271
(
1972
).
39.
S.
Tenneti
and
S.
Subramaniam
, “
Particle-resolved direct numerical simulation for gas-solid flow model development
,”
Annu. Rev. Fluid Mech.
46
,
199
230
(
2014
).
40.
R.
Clift
, “
The motion of particles in turbulent gas-streams
,” in
Proceedings of the Chemeca '70
(University of Surrey,
1970
), Vol.
1
, p.
14
.
41.
E.
Loth
, “
Compressibility and rarefaction effects on drag of a spherical particle
,”
AIAA J.
46
,
2219
2228
(
2008
).
42.
W. F.
Phillips
, “
Drag on a small sphere moving through a gas
,”
Phys. Fluids
18
,
1089
1093
(
1975
).
43.
B.
Annis
,
A.
Malinauskas
, and
E.
Mason
, “
Theory of drag on neutral or charged spherical aerosol particles
,”
J. Aerosol Sci.
3
,
55
64
(
1972
).
44.
T.
Zhu
,
R.
Kumar
,
E.
Titov
, and
D.
Levin
, “
Analysis of fractal-like spore aggregates in direct simulation Monte Carlo
,”
J. Thermophys. Heat Transfer
26
,
417
429
(
2012
).
45.
A.
Filippov
,
M.
Zurita
, and
D.
Rosner
, “
Fractal-like aggregates: Relation between morphology and physical properties
,”
J. Colloid Interface Sci.
229
,
261
273
(
2000
).
46.
K.
Skorupski
,
J.
Mroczka
,
N.
Riefler
,
H.
Oltmann
,
S.
Will
, and
T.
Wriedt
, “
Impact of morphological parameters onto simulated light scattering patterns
,”
J. Quant. Spectrosc. Radiat. Transfer
119
,
53
66
(
2013
).
47.
G.
Marsaglia
 et al., “
Choosing a point from the surface of a sphere
,”
Ann. Math. Stat.
43
,
645
646
(
1972
).
48.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
2012
), Vol.
1
.
49.
B.
Fornberg
, “
Steady viscous flow past a sphere at high Reynolds numbers
,”
J. Fluid Mech.
190
,
471
489
(
1988
).
50.
C.
Crowe
,
T.
Troutt
, and
J.
Chung
, “
Particle interactions with vortices
,” in
Fluid Vortices
(
Springer
,
1995
), pp.
829
861
.
51.
Y.
Yang
,
J.
Chung
,
T.
Troutt
, and
C.
Crowe
, “
The effects of particles on the stability of a two-phase wake flow
,”
Int. J. Multiphase Flow
19
,
137
149
(
1993
).
52.
Y.
Yang
,
C.
Crowe
,
J.
Chung
, and
T.
Troutt
, “
Experiments on particle dispersion in a plane wake
,”
Int. J. Multiphase Flow
26
,
1583
1607
(
2000
).
53.
A. V.
Marayikkottu
,
S. S.
Sawant
,
D. A.
Levin
,
C.
Huang
,
M.
Schoenitz
, and
E. L.
Dreizin
, “
Study of particle lifting mechanisms in an electrostatic discharge plasma
,”
Int. J. Multiphase Flow
137
,
103564
(
2021
).
54.
A. V.
Marayikkottu
and
D. A.
Levin
, “
Influence of particle non-dilute effects on its dispersion in particle-laden blast wave systems
,”
J. Appl. Phys.
130
,
034701
(
2021
).
You do not currently have access to this content.