Distributed combustion, often associated with the low-oxygen condition, offers ultra-low NOx emission. However, it was recently achieved without combustion air dilution or internal flue gas recirculation, using a distinct approach called mixture temperature-controlled combustion. Here, the fuel–air stream is cooled at the inlet to delay ignition and, hence, foster homogeneous mixture formation. This numerical study aims to understand its operation better and present a robust framework for distributed combustion modeling in a parameter range where such operation was not predicted before by any existing theory. Further, liquid fuel combustion was evaluated, which brings additional complexity. Four operating conditions were presented at which distributed combustion was observed. The reacting flow was modeled by flamelet-generated manifold, based on a detailed n-dodecane mechanism. The Zimont turbulent flame speed model was used with significantly reduced coefficients to achieve distributed combustion. The droplets of airblast atomization were tracked in a Lagrangian frame. The numerical results were validated by Schlieren images and acoustic spectra. It was concluded that the reactant dilution ratio remained below 0.25 through the combustion chamber, revealing that the homogeneous fuel–air mixture is the principal reason for excellent flame stability and ultra-low NOx emission without significant internal recirculation. The potential applications of these results are boilers, furnaces, and gas turbines.

1.
I.
Hannula
and
D. M.
Reiner
, “
Near-term potential of biofuels, electrofuels, and battery electric vehicles in decarbonizing road transport
,”
Joule
3
,
2390
(
2019
).
2.
IEA
, see https://www.iea.org/topics/transport for “
Transport: Improving the sustainability of passenger and freight transport
.”
3.
E. H.
Kim
,
Y. G.
Park
, and
J. H.
Roh
, “
Competitiveness of open-cycle gas turbine and its potential in the future Korean electricity market with high renewable energy mix
,”
Energy Policy
129
,
1056
(
2019
).
4.
S.
Öberg
,
M.
Odenberger
, and
F.
Johnsson
, “
Exploring the competitiveness of hydrogen-fueled gas turbines in future energy systems
,”
Int. J. Hydrogen Energy
47
,
624
(
2022
).
5.
H.
Liu
,
J.
Qin
,
Z.
Ji
,
F.
Guo
, and
P.
Dong
, “
Study on the performance comparison of three configurations of aviation fuel cell gas turbine hybrid power generation system
,”
J. Power Sources
501
,
230007
(
2021
).
6.
A.
Cavaliere
and
M.
de Joannon
, “
Mild combustion
,”
Prog. Energy Combust. Sci.
30
,
329
(
2004
).
7.
F.
Xing
,
A.
Kumar
,
Y.
Huang
,
S.
Chan
,
C.
Ruan
,
S.
Gu
, and
X.
Fan
, “
Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application
,”
Appl. Energy
193
,
28
(
2017
).
8.
Y.
Liu
,
X.
Sun
,
V.
Sethi
,
D.
Nalianda
,
Y. G.
Li
, and
L.
Wang
, “
Review of modern low emissions combustion technologies for aero gas turbine engines
,”
Prog. Aerosp. Sci.
94
,
12
(
2017
).
9.
Y.
Huang
and
V.
Yang
, “
Dynamics and stability of lean-premixed swirl-stabilized combustion
,”
Prog. Energy Combust. Sci.
35
,
293
(
2009
).
10.
A. H.
Lefebvre
and
D. R.
Ballal
,
Gas Turbine Combustion
, 3rd ed. (
CRC Press
,
Boca Raton
,
2010
).
11.
S.
Sobhani
,
P.
Muhunthan
,
E.
Boigné
,
D.
Mohaddes
, and
M.
Ihme
, “
Experimental feasibility of tailored porous media burners enabled via additive manufacturing
,”
Proc. Combust. Inst.
38
,
6713
(
2021
).
12.
R.
Weber
,
A. K.
Gupta
, and
S.
Mochida
, “
High temperature air combustion (HiTAC): How it all started for applications in industrial furnaces and future prospects
,”
Appl. Energy
278
,
115551
(
2020
).
13.
Y.
Tu
,
M.
Xu
,
D.
Zhou
,
Q.
Wang
,
W.
Yang
, and
H.
Liu
, “
CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres
,”
Appl. Energy
240
,
1003
(
2019
).
14.
S.
Karyeyen
,
J. S.
Feser
,
E.
Jahoda
, and
A. K.
Gupta
, “
Development of distributed combustion index from a swirl-assisted burner
,”
Appl. Energy
268
,
114967
(
2020
).
15.
V. M.
Reddy
,
D.
Sawant
,
D.
Trivedi
, and
S.
Kumar
, “
Studies on a liquid fuel based two stage flameless combustor
,”
Proc. Combust. Inst.
34
,
3319
(
2013
).
16.
A. E. E.
Khalil
and
A. K.
Gupta
, “
Towards colorless distributed combustion regime
,”
Fuel
195
,
113
(
2017
).
17.
J. A.
Wünning
and
J. G.
Wünning
, “
Flameless oxidation to reduce thermal NO-formation
,”
Prog. Energy Combust. Sci.
23
,
81
(
1997
).
18.
V.
Józsa
, “
mixture temperature-controlled combustion: A revolutionary concept for ultra-low NOx emission
,”
Fuel
291
,
120200
(
2021
).
19.
D.
Füzesi
,
C.
Cheng Tung
, and
V.
Józsa
, “
Numerical modeling of waste cooking oil biodiesel combustion in a turbulent swirl burner
,” in
Proceedings of the 10th European Combustion Meeting
(Italian Section of the Combustion Institute, 2021), pp.
397
402
; available at https://www.ecm2021napoli.eu/detailedprogram/
20.
O. A.
Kuti
,
S. M.
Sarathy
, and
K.
Nishida
, “
Spray combustion simulation study of waste cooking oil biodiesel and diesel under direct injection diesel engine conditions
,”
Fuel
267
,
117240
(
2020
).
21.
D.
Cerinski
,
M.
Vujanović
,
Z.
Petranović
,
J.
Baleta
, and
N.
Samec
, “
Numerical analysis of fuel injection configuration on nitrogen oxides formation in a jet engine combustion chamber
,”
Energy Convers. Manage.
220
,
112862
(
2020
).
22.
M.
Ilbas
,
O.
Kumuk
, and
S.
Karyeyen
, “
Modelling of the gas-turbine colorless distributed combustion: An application to hydrogen enriched e kerosene fuel
,”
Int. J. Hydrogen Energy
47
,
12354
(
2022
).
23.
A.
Ilbas
,
M.
Bahadır
, and
S.
Karyeyen
, “
Investigation of colorless distributed combustion regime using a high internal recirculative combustor
,”
Int. J. Hydrogen Energy
47
,
12338
(
2022
).
24.
S.
Dixit
,
A.
Kumar
,
S.
Kumar
,
N.
Waghmare
,
H. C.
Thakur
, and
S.
Khan
, “
CFD analysis of biodiesel blends and combustion using Ansys Fluent
,”
Mater. Today: Proc.
26
,
665
(
2020
).
25.
M. T.
Lewandowski
,
A.
Parente
, and
J.
Pozorski
, “
Generalised eddy dissipation concept for MILD combustion regime at low local Reynolds and Damköhler numbers. Part 1: Model framework development
,”
Fuel
278
,
117743
(
2020
).
26.
S.
Iavarone
,
A.
Péquin
,
Z. X.
Chen
,
N. A. K.
Doan
,
N.
Swaminathan
, and
A.
Parente
, “
An a priori assessment of the partially stirred reactor (PaSR) model for MILD combustion
,”
Proc. Combust. Inst.
38
,
5403
(
2021
).
27.
H.
Abdulrahman
,
A.
Validi
, and
F.
Jaberi
, “
Large-eddy simulation/filtered mass density function of non-premixed and premixed colorless distributed combustion
,”
Phys. Fluids
33
,
055118
(
2021
).
28.
V. K.
Arghode
,
A. K.
Gupta
, and
K. M.
Bryden
, “
High intensity colorless distributed combustion for ultra low emissions and enhanced performance
,”
Appl. Energy
92
,
822
(
2012
).
29.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
, 3rd ed. (
RT Edwards, Inc.
,
2012
).
30.
ANSYS Inc.
,
ANSYS Fluent Theory Guide, Release 2020 R1
(
ANSYS Inc.
,
2020
).
31.
J. A.
Van Oijen
and
L. P.
De Goey
, “
Modelling of premixed laminar flames using flamelet-generated manifolds
,”
Combust. Sci. Technol.
161
,
113
(
2000
).
32.
A.
Sciacchitano
,
B.
Wieneke
, and
F.
Scarano
, “
PIV uncertainty quantification by image matching
,”
Meas. Sci. Technol.
24
,
045302
(
2013
).
33.
ANSYS Inc
.,
5 Best Practices for Gas Turbine Combustion Meshing Using Ansys Fluent
(
ANSYS Inc.
,
2020
).
34.
A. H.
Lefebvre
and
V. G.
McDonell
,
Atomization and Sprays
, 2nd ed. (
CRC Press
,
Boca Raton, FL
,
2017
).
35.
A.
Urbán
,
B.
Katona
,
M.
Malý
,
J.
Jedelský
, and
V.
Józsa
, “
Empirical correlation for spray half cone angle in plain-jet airblast atomizers
,”
Fuel
277
,
118197
(
2020
).
36.
B.
Savard
,
H.
Wang
,
A.
Wehrfritz
, and
E. R.
Hawkes
, “
Direct numerical simulations of rich premixed turbulent N-dodecane/air flames at diesel engine conditions
,”
Proc. Combust. Inst.
37
,
4655
(
2019
).
37.
E.
Ranzi
,
A.
Frassoldati
,
A.
Stagni
,
M.
Pelucchi
, and
A.
Cuoci
, “
Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels
,”
Int. J. Chem. Kinet.
46
(
9
),
512
(
2014
).
38.
G.
Ceriello
,
G.
Sorrentino
,
A.
Cavaliere
,
P.
Sabia
, and
M.
De Joannon
, “
The role of dilution level and canonical configuration in the modeling of MILD combustion systems with internal recirculation
,”
Fuel
264
,
116840
(
2020
).
39.
A. Y.
Klimenko
, “
The convergence of combustion models and compliance with the Kolmogorov scaling of turbulence
,”
Phys. Fluids
33
,
025112
(
2021
).
40.
K.
Zhang
,
A.
Ghobadian
, and
J. M.
Nouri
, “
Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor
,”
Appl. Therm. Eng.
110
,
910
(
2017
).
41.
C. T.
Chong
and
S.
Hochgreb
, “
Measurements of laminar flame speeds of liquid fuels: Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV)
,”
Proc. Combust. Inst.
33
,
979
(
2011
).
42.
VDI Heat Atlas
, 2nd ed., edited by
M.
Martin
and
K.
Holge
(
Springer-Verlag
,
Berlin/Heidelberg
,
2010
).
43.
TRANSMETRA haltec GmbH
,
Table of Emissivity of Various Surfaces
(
MIKRON Vertretung Schweiz
,
Schaffhausen
,
2003
).
44.
E. W.
Lemmon
,
M. O.
McLinden
, and
D. G.
Friend
, “
Thermophysical properties of fluid systems
,” NIST Chemistry WebBook, NIST Standard Reference Database No. 69,
2005
.
45.
D.
Csemány
,
I.
Gujás
,
C. T.
Chong
, and
V.
Józsa
, “
Evaluation of material property estimating methods for N-alkanes, 1-alcohols, and methyl esters for droplet evaporation calculations
,”
Heat Mass Transfer
57
,
1965
(
2021
).
46.
J. R.
Brock
and
R. B.
Bird
, “
Surface tension and the principle of corresponding states
,”
AIChE J.
1
,
174
(
1955
).
47.
K.
Lucas
, “
Die Druckabhängigkeit Der Viskosität von Flüssigkeiten—Eine Einfache Abschätzung
,”
Chem. Ingenieur Technik
53
,
959
(
1981
).
48.
R. A.
Svehla
, “
Estimated viscosities and thermal conductivities of gases at high temperatures
,”
NASA Technical Report No. R-132
(
Lewis Research Center
,
Cleveland, OH
,
1962
).
49.
E. N.
Fuller
,
P. D.
Schettler
, and
J. C.
Giddings
, “
New method for prediction of binary gas-phase diffusion coefficients
,”
Ind. Eng. Chem.
58
,
18
(
1966
).
50.
E. N.
Fuller
,
K.
Ensley
, and
J. C.
Giddings
, “
Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections
,”
J. Phys. Chem.
73
,
3679
(
1969
).
51.
W.
Thielicke
and
R.
Sonntag
, “
Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVLab
,”
J. Open Res. Software
9
,
12
(
2021
).
52.
J. M.
Beér
and
N. A.
Chigier
,
Combustion Aerodynamics
(
Robert E. Krieger Publishing Company, Inc
.,
London
,
1972
).
53.
S.
Taamallah
,
Y.
Dagan
,
N.
Chakroun
,
S. J.
Shanbhogue
,
K.
Vogiatzaki
, and
A. F.
Ghoniem
, “
Helical vortex core dynamics and flame interaction in turbulent premixed swirl combustion: A combined experimental and large eddy simulation investigation
,”
Phys. Fluids
31
,
025108
(
2019
).
54.
S.
Schmidt
,
O.
Krüger
,
K.
Göckeler
, and
C. O.
Paschereit
, “
Numerical investigation of the breakup behavior of an oscillating two-phase jet
,”
Phys. Fluids
30
,
072101
(
2018
).
55.
H.
Xiao
,
K.
Luo
,
T.
Jin
,
H.
Wang
,
J.
Xing
, and
J.
Fan
, “
Direct numerical simulations of turbulent non-premixed flames: Assessment of turbulence within swirling flows
,”
Phys. Fluids
33
,
015112
(
2021
).
56.
V. M.
Reddy
,
A.
Katoch
,
W. L.
Roberts
, and
S.
Kumar
, “
Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels
,”
Proc. Combust. Inst.
35
,
3581
(
2015
).
57.
S.
Sharma
,
A.
Chowdhury
, and
S.
Kumar
, “
A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor
,”
Energy
194
,
116819
(
2020
).
58.
S.
Sharma
,
R.
Kumar
,
A.
Chowdhury
,
Y.
Yoon
, and
S.
Kumar
, “
On the effect of spray parameters on CO and NOx emissions in a liquid fuel fired flameless combustor
,”
Fuel
199
,
229
(
2017
).
59.
S.
Sharma
,
P.
Singh
,
A.
Gupta
,
A.
Chowdhury
,
B.
Khandelwal
, and
S.
Kumar
, “
Distributed combustion mode in a can-type gas turbine combustor—A numerical and experimental study
,”
Appl. Energy
277
,
115573
(
2020
).
60.
S.
Kumar
,
P. J.
Paul
, and
H. S.
Mukunda
, “
Studies on a new high-intensity low-emission burner
,”
Proc. Combust. Inst.
29
,
1131
1137
(
2002
).

Supplementary Material

You do not currently have access to this content.