A range of fascinating flow features was observed while cleaning or filling the medicine or liquid vials in the kitchen sink by serendipity. Here, we present the formation of an open inverted bell and bell-shaped flow structures formed from the water sheet in a new geometric arrangement, hitherto unknown. When a laminar jet impinges on the surface of the liquid in the vial of marginally larger or similar diameter, an inverted open water bell is formed, which gradually changes into a flat water sheet to classical water bell as the flow rate is increased. The inverted water bell structures disintegrate by forming water ridges, which finally break down into different sizes of droplets.
References
1.
F.
Savart
, “Mémoire sur la Constitution des veines liquides lancées par des orifices circulaires en mince paroi
,” Ann. Chim. Phys.
53
, 337
–386
(1833
).2.
J.
Boussinesq
, “Théories des expériences de Savart, sur la forme que prend une veine liquide après s'être choquée contre un plan circulaire
,” C. R. Acad. Sci.
69
, 45
–48
(1869
).3.
F. L.
Hopwood
, “Water bells
,” Proc. Phys. Soc., Sect. B
65
, 2
(1952
).4.
C.
Clanet
, “Dynamics and stability of water bells
,” J. Fluid Mech.
430
, 111
–147
(2001
).5.
G. I.
Taylor
, “The dynamics of thin-sheets of fluid. I. Water bells
,” Proc. R. Soc. London, Ser. A
253
, 289
–295
(1959
).6.
G. N.
Lance
and R. L.
Perry
, “Water bells
,” Proc. Phys. Soc., Sect. B
66
, 1067
–1073
(1953
).7.
M. H. I.
Baird
and J. F.
Davidson
, “Annular jets-I: Fluid dynamics
,” Chem. Eng. Sci.
17
, 467
–472
(1962
).8.
P. P.
Wegener
and J. Y.
Parlange
, “Surface tension of liquids from water bell experiments
,” Z. Phys. Chem. Neue Folge
43
, 245
–259
(1964
).9.
C.
Clanet
, “Waterbells and liquid sheets
,” Annu. Rev. Fluid Mech.
39
, 469
–496
(2007
).10.
F.
Savart
, “Suite de Mémoire sur le choc d'une veine liquide lancée contre un plan circulaire
,” Ann. Chim.
54
, 113
–145
(1833
).11.
M.
Paramati
and M. S.
Tirumkudulu
, “Open water bells
,” Phys. Fluids
28
, 032105
(2016
).12.
P.
Marmottant
, E.
Villermaux
, and C.
Clanet
, “Transient surface tension of an expanding liquid sheet
,” J. Colloid Interface Sci.
230
, 29
–40
(2000
).13.
S. T.
Thoroddsen
, “The ejecta sheet generated by the impact of a drop
,” J. Fluid Mech.
451
, 373
–381
(2002
).14.
O. G.
Engel
, “Crater depth in fluid impacts
,” J. Appl. Phys.
37
, 1798
–1808
(1966
).15.
F.
Savart
, “Mémoire sur le choc de deux veines liquides animées de mouvements directement opposés
,” Ann. Chim. Phys.
55
, 257
–310
(1833
).16.
F.
Savart
, “Memoire sur le choc d'une veine liquide lancee contre un plan circulaire
,” Ann. Chim. Phys.
54
, 56
–87
(1833
).17.
W. N.
Bond
, “The surface tension of a moving water sheet
,” Proc. Phys. Soc.
47
, 549
(1935
).18.
E.
Buchwald
and H.
König
, “Dynamic surface tension from liquid bells
,” Ann. Phys.
26
, 661–U10
(1936
).19.
G. I.
Taylor
, “The dynamics of thin sheets of fluid II. Waves on fluid sheets
,” Proc. R. Soc. London, Ser. A
253
, 296
–312
(1959
).20.
G. I.
Taylor
, “The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets
,” Proc. R. Soc. London, Ser. A
253
, 313
–321
(1959
).21.
J. M.
Kolinski
, H.
Aharoni
, J.
Fineberg
, and E.
Sharon
, “Growth and nonlinear response of driven water bells
,” Phys. Rev. Fluids
2
, 042401
(2017
).22.
C.
Clanet
, “Stability of water bells generated by jet impacts on a disk
,” Phys. Rev. Lett.
85
, 5106
–5109
(2000
).23.
C.
Clanet
and E.
Villermaux
, “Life of a smooth liquid sheet
,” J. Fluid Mech.
462
, 307
–340
(2002
).24.
E.
Villermaux
and C.
Almarcha
, “Node dynamics and cusps size distribution at the border of liquid sheets
,” Phys. Rev. Fluids
1
, 041902
(2016
).25.
H.
Lhuissier
and E.
Villermaux
, “Crumpled water bells
,” J. Fluid Mech.
693
, 508
–540
(2012
).26.
J. M.
Aristoff
, C.
Lieberman
, E.
Chan
, and J. W. M.
Bush
, “Water bell and sheet instabilities
,” Phys. Fluids
18
, 091109
(2006
).27.
R.
Buckingham
and J. W. M.
Bush
, “Fluid polygons
,” Phys. Fluids
13
, S10
(2001
).28.
N. B.
Speirs
, M. M.
Mansoor
, J.
Belden
, R. C.
Hurd
, Z.
Pan
, and T. T.
Truscott
, “Fluted films
,” Phys. Rev. Fluids
3
, 100504
(2018
).29.
G. J.
Jameson
, C.
Jenkins
, E. C.
Button
, and J. E.
Sader
, “Water bells created from below
,” Phys. Fluids
20
, 091108
(2008
).30.
G. J.
Jameson
, C. E.
Jenkins
, E. C.
Button
, and J. E.
Sader
, “Water bells formed on the underside of a horizontal plate. Part 1. Experimental investigation
,” J. Fluid Mech.
649
, 19
–43
(2010
).31.
E. C.
Button
, J. F.
Davidson
, G. J.
Jameson
, and J. E.
Sader
, “Water bells formed on the underside of a horizontal plate. Part 2. Theory
,” J. Fluid Mech.
649
, 45
–68
(2010
).32.
J. S.
Rowlinson
and B.
Widom
, Molecular Theory of Capillarity
(Clarendon
, Oxford
, 1982
).33.
J. R.
Dormand
and P. J.
Prince
, “A family of embedded Runge-Kutta formulae
,” J. Comput. Appl. Math.
6
, 19
–26
(1980
).34.
L. F.
Shampine
and M. W.
Reichelt
, “The MATLAB ODE suite
,” SIAM J. Sci. Comput.
18
, 1
–22
(1997
).35.
B. E.
Rapp
, Microfluidics: Modeling, Mechanics and Mathematics
(William Andrew
, 2016
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.