Droplet generation in a T-junction with surfactants is simulated using our recently developed lattice Boltzmann method. The method is first used to explore the effect of surfactant concentration ψb on droplet generation. As ψb increases, droplet generation tends to shift from squeezing to dripping regime and then to jetting regime. In the clean system, the upstream pressure varies almost periodically with time. However, in the surfactant-laden system, the upstream pressure no longer varies periodically but overall increases with time for droplet generation in squeezing and dripping regimes. This is because the addition of surfactants results in an additional pressure drop between the front and rear of the generated droplet. Then, droplet generation in both clean and surfactant-laden systems is compared to explore the surfactant role under different values of the capillary number Ca. In either clean or surfactant-laden system, the pressure upstream of the junction rapidly decreases as Ca increases. In the presence of surfactants, the upstream pressure overall increases with time for droplet generation in squeezing and dripping regimes, but the increased amplitude decreases with Ca. Finally, we establish the phase diagrams describing how the droplet generation regime varies with flow rate ratio and Ca in both clean and surfactant-laden systems. It is found that the addition of surfactants reduces the critical capillary number distinguishing squeezing from dripping and the critical capillary number distinguishing dripping from jetting.

1.
X.
Wang
,
J.
Liu
,
P.
Wang
 et al, “
Synthesis of biomaterials utilizing microfluidic technology
,”
Genes
9
(
6
),
283
(
2018
).
2.
A.-G.
Niculescu
,
C.
Chircov
,
A. C.
Bîrcă
 et al, “
Nanomaterials synthesis through microfluidic methods: An updated overview
,”
Nanomaterials
11
(
4
),
864
(
2021
).
3.
X.
Zhao
,
F.
Bian
,
L.
Sun
 et al, “
Microfluidic generation of nanomaterials for biomedical applications
,”
Small
16
(
9
),
1901943
(
2020
).
4.
A. N. M.
Martínez
,
M.
Assirelli
, and
J.
van der Schaaf
, “
Droplet size and liquid–liquid mass transfer with reaction in a rotor-stator spinning disk reactor
,”
Chem. Eng. Sci.
242
,
116706
(
2021
).
5.
N.
Yanagisawa
,
E.
Kozgunova
,
G.
Grossmann
 et al, “
Microfluidics-based bioassays and imaging of plant cells
,”
Plant Cell Physiol.
62
(
8
),
1239
1250
(
2021
).
6.
L.
Sun
,
W.
Yang
,
S.
Cai
 et al, “
Recent advances in microfluidic technologies for separation of biological cells
,”
Biomed. Microdev.
22
(
3
),
55
(
2020
).
7.
M.
Besanjideh
,
A.
Shamloo
, and
S. K.
Hannani
, “
Enhanced oil-in-water droplet generation in a T-junction microchannel using water-based nanofluids with shear-thinning behavior: A numerical study
,”
Phys. Fluids
33
(
1
),
012007
(
2021
).
8.
S.
Mehraji
and
M.
Saadatmand
, “
Flow regime mapping for a two-phase system of aqueous alginate and water droplets in T-junction geometry
,”
Phys. Fluids
33
(
7
),
072009
(
2021
).
9.
A.
Lashkaripour
,
C.
Rodriguez
,
N.
Mehdipour
 et al, “
Machine learning enables design automation of microfluidic flow-focusing droplet generation
,”
Nat. Commun.
12
,
25
(
2021
).
10.
W.
Yu
,
B.
Li
,
X.
Liu
 et al, “
Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device
,”
Chem. Eng. Sci.
243
,
116648
(
2021
).
11.
H.
Wang
,
Y.
Fu
,
Y.
Wang
 et al, “
Three-dimensional lattice Boltzmann simulation of Janus droplet formation in Y-shaped co-flowing microchannel
,”
Chem. Eng. Sci.
225
,
115819
(
2020
).
12.
D.
Pan
,
Y.
Zhang
,
T.
Zhang
 et al, “
Flow regimes of polymeric fluid droplet formation in a co-flowing microfluidic device
,”
Colloid Interface Sci. Commun.
42
,
100392
(
2021
).
13.
G. F.
Christopher
and
S. L.
Anna
, “
Microfluidic methods for generating continuous droplet streams
,”
J. Phys. D: Appl. Phys.
40
(
19
),
R319
(
2007
).
14.
J. H.
Xu
,
S. W.
Li
,
J.
Tan
 et al, “
Preparation of highly monodisperse droplet in a T-junction microfluidic device
,”
AIChE J.
52
(
9
),
3005
3010
(
2006
).
15.
J.-C.
Baret
,
F.
Kleinschmidt
,
A.
El Harrak
 et al, “
Kinetic aspects of emulsion stabilization by surfactants: A microfluidic analysis
,”
Langmuir
25
(
11
),
6088
6093
(
2009
).
16.
N. M.
Kovalchuk
,
E.
Roumpea
,
E.
Nowak
 et al, “
Effect of surfactant on emulsification in microchannels
,”
Chem. Eng. Sci.
176
,
139
152
(
2018
).
17.
F.
Zhang
,
P.
Liao
,
Y.
Sun
 et al, “
Surfactant and oil formulations for monodisperse droplet emulsion PCR
,”
Lab Chip
20
,
2328
2333
(
2020
).
18.
P.
Garstecki
,
I.
Gitlin
,
W.
DiLuzio
 et al, “
Formation of monodisperse bubbles in a microfluidic flow-focusing device
,”
Appl. Phys. Lett.
85
,
2649
2651
(
2004
).
19.
P. B.
Umbanhowar
,
V.
Prasad
, and
D. A.
Weitz
, “
Monodisperse emulsion generation via drop break off in a coflowing stream
,”
Lanmuir
16
(
2
),
347
351
(
2000
).
20.
C.
Cramer
,
P.
Fischer
, and
E. J.
Windhab
, “
Drop formation in a co-flowing ambient fluid
,”
Chem. Eng. Sci.
59
(
15
),
3045
3058
(
2004
).
21.
W.
Yu
,
X.
Liu
,
Y.
Zhao
 et al, “
Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles
,”
Chem. Eng. Sci.
203
,
259
284
(
2019
).
22.
L.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
s1–s10
(
1
),
4
13
(
1878
).
23.
M.
Kalli
,
L.
Chagot
, and
P.
Angeli
, “
Comparison of surfactant mass transfer with drop formation times from dynamic interfacial tension measurements in microchannels
,”
J. Colloid Interface Sci.
605
,
204
213
(
2022
).
24.
E.
Roumpea
,
N. M.
Kovalchuk
,
M.
Chinaud
 et al, “
Experimental studies on droplet formation in a flow-focusing microchannel in the presence of surfactants
,”
Chem. Eng. Sci.
195
,
507
518
(
2019
).
25.
K.
Wang
,
Y. C.
Lu
,
J. H.
Xu
 et al, “
Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process
,”
Langmuir
25
(
4
),
2153
2158
(
2009
).
26.
T.
Glawdel
and
C. L.
Ren
, “
Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects
,”
Phys. Rev. E
86
(
2
),
026308
(
2012
).
27.
S.
Hattori
,
C.
Tang
,
D.
Tanaka
 et al, “
Development of microdroplet generation method for organic solvents used in chemical synthesis
,”
Molecules
25
(
22
),
5360
(
2020
).
28.
S.
Sugiura
,
M.
Nakajima
,
T.
Oda
 et al, “
Effect of interfacial tension on the dynamic behavior of droplet formation during microchannel emulsification
,”
J. Colloid Interface Sci.
269
(
1
),
178
185
(
2004
).
29.
Y.
Chen
,
J.-H.
Xu
, and
G.-S.
Luo
, “
The dynamic adsorption of different surfactants on droplet formation in coaxial microfluidic devices
,”
Chem. Eng. Sci.
138
,
655
662
(
2015
).
30.
M.
De Menech
,
P.
Garstecki
,
F.
Jousse
 et al, “
Transition from squeezing to dripping in a microfluidic T-shaped junction
,”
J. Fluid Mech.
595
,
141
161
(
2008
).
31.
M.
Rahimi
,
A. S.
Khorrami
, and
P.
Rezai
, “
Effect of device geometry on droplet size in co-axial flow-focusing microfluidic droplet generation devices
,”
Colloids Surf., A
570
,
510
517
(
2019
).
32.
K.
Mu
,
T.
Si
,
E.
Li
 et al, “
Numerical study on droplet generation in axisymmetric flow focusing upon actuation
,”
Phys. Fluids
30
(
1
),
012111
(
2018
).
33.
A.
Lashkaripour
,
A.
Abouei Mehrizi
,
M.
Rasouli
 et al, “
Numerical study of droplet generation process in a microfluidic flow focusing
,”
J. Comput. Appl. Mech.
46
(
2
),
167
175
(
2015
).
34.
A.
Riaud
,
H.
Zhang
,
X.
Wang
 et al, “
Numerical study of surfactant dynamics during emulsification in a T-junction microchannel
,”
Langmuir
34
(
17
),
4980
4990
(
2018
).
35.
J.
Zhang
,
H.
Liu
, and
Y.
Ba
, “
Numerical study of droplet dynamics on a solid surface with insoluble surfactants
,”
Langmuir
35
(
24
),
7858
7870
(
2019
).
36.
H.
Liu
,
J.
Zhang
,
Y.
Ba
 et al, “
Modelling a surfactant-covered droplet on a solid surface in three-dimensional shear flow
,”
J. Fluid Mech.
897
,
A33
(
2020
).
37.
J. M.
Park
,
M. A.
Hulsen
, and
P. D.
Anderson
, “
Numerical investigation of the effect of insoluble surfactant on drop formation in microfluidic device
,”
Eur. Phys. J.: Spec. Top.
222
,
199
210
(
2013
).
38.
K.
Dieter-Kissling
,
H.
Marschall
, and
D.
Bothe
, “
Direct numerical simulation of droplet formation processes under the influence of soluble surfactant mixtures
,”
Comput. Fluids
113
,
93
105
(
2015
).
39.
K.
Sripadaraja
,
M. N.
Satyanarayan
, and
G.
Umesh
, “
Generation of microdroplets in T-junction devices by pulsed fluid flow: Simulation studies
,”
ISSS J. Micro Smart Syst.
10
,
103
117
(
2021
).
40.
P.
Zhu
and
L.
Wang
, “
Passive and active droplet generation with microfluidics: A review
,”
Lab Chip
17
,
34
75
(
2017
).
41.
T.
Sakai
, “
Surfactant-free emulsions
,”
Curr. Opin. Colloid Interface Sci.
13
(
4
),
228
235
(
2008
).
42.
S.-J.
Seok
,
J.-S.
Park
,
J.-R.
Hong
 et al, “
Surfactant volume is an essential element in human toxicity in acute glyphosate herbicide intoxication
,”
Clin. Toxicol.
49
(
10
),
892
899
(
2011
).
43.
K. I.
Shimokawa
,
F.
Ishii
, and
H.
Ohshima
, “
Physicochemical properties and clinical applications of surfactant-free emulsions prepared with electrolytic reduction ion water (Eri)
,” in
Encyclopedia of Biocolloid and Biointerface Science 2V Set
(
John Wiley & Sons, Inc.
,
2016
), pp.
451
458
.
44.
J.
Zhang
,
H.
Liu
,
B.
Wei
 et al, “
Pore-scale modeling of two-phase flows with soluble surfactants in porous media
,”
Energy Fuels
35
(
23
),
19374
19388
(
2021
).
45.
B.
Wei
,
J.
Hou
,
M. C.
Sukop
 et al, “
Flow behaviors of emulsions in constricted capillaries: A lattice Boltzmann simulation study
,”
Chem. Eng. Sci.
227
,
115925
(
2020
).
46.
H.
Liu
and
Y.
Zhang
, “
Droplet formation in a T-shaped microfluidic junction
,”
J. Appl. Phys.
106
(
3
),
034906
(
2009
).
47.
F.
Jiang
,
H.
Liu
,
X.
Chen
 et al, “
A coupled LBM-DEM method for simulating the multiphase fluid–solid interaction problem
,”
J. Comput. Phys.
454
,
110963
(
2022
).
48.
F.
Jiang
,
J.
Yang
,
E.
Boek
 et al, “
Investigation of viscous coupling effects in three-phase flow by lattice Boltzmann direct simulation and machine learning technique
,”
Adv. Water Resour.
147
,
103797
(
2021
).
49.
G.
Soligo
,
A.
Roccon
, and
A.
Soldati
, “
Coalescence of surfactant-laden drops by phase field method
,”
J. Comput. Phys.
376
,
1292
1311
(
2019
).
50.
G.
Soligo
,
A.
Roccon
, and
A.
Soldati
, “
Deformation of clean and surfactant-laden droplets in shear flow
,”
Meccanica
55
,
371
386
(
2020
).
51.
H.
Nganguia
,
Y.-N.
Young
,
P. M.
Vlahovska
 et al, “
Equilibrium electro-deformation of a surfactant-laden viscous drop
,”
Phys. Fluids
25
(
9
),
092106
(
2013
).
52.
D.
Bruijn
, “
Tipstreaming of drops in simple shear flows
,”
Chem. Eng. Sci.
48
(
2
),
277
284
(
1993
).
53.
Q.
Zou
and
X.
He
, “
On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
,”
Phys. Fluids
9
(
6
),
1591
1598
(
1997
).
54.
L.
Hao
and
P.
Cheng
, “
Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel
,”
J. Power Sources
190
(
2
),
435
446
(
2009
).
55.
N.
Wang
,
C.
Semprebon
,
H.
Liu
 et al, “
Modelling double emulsion formation in planar flow-focusing microchannels
,”
J. Fluid Mech.
895
,
A22
(
2020
).
56.
A.
Riaud
,
K.
Wang
, and
G.
Luo
, “
A combined lattice-Boltzmann method for the simulation of two-phase flows in microchannel
,”
Chem. Eng. Sci.
99
,
238
249
(
2013
).
57.
W.
Wang
,
Z.
Liu
,
Y.
Jin
 et al, “
LBM simulation of droplet formation in micro-channels
,”
Chem. Eng. J.
173
(
3
),
828
836
(
2011
).
58.
G. F.
Christopher
,
N. N.
Noharuddin
,
J. A.
Taylor
 et al, “
Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions
,”
Phys. Rev. E
78
(
3
),
036317
(
2008
).
59.
H.
Yang
,
Q.
Zhou
, and
L.-S.
Fan
, “
Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction
,”
Chem. Eng. Sci.
87
,
100
110
(
2013
).
60.
Z.
Luo
,
L.
Shang
, and
B.
Bai
, “
Marangoni effect on the motion of a droplet covered with insoluble surfactant in a square microchannel
,”
Phys. Fluids
30
(
7
),
077101
(
2018
).
61.
H.
Liu
,
Y.
Ba
,
L.
Wu
 et al, “
A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants
,”
J. Fluid Mech.
837
,
381
412
(
2018
).
62.
Y.
Ba
,
H.
Liu
,
J.
Sun
 et al, “
Three dimensional simulations of droplet formation in symmetric and asymmetric T-junctions using the color-gradient lattice Boltzmann model
,”
Int. J. Heat Mass Transfer
90
,
931
947
(
2015
).
63.
X.-B.
Li
,
F.-C.
Li
,
J.-C.
Yang
 et al, “
Study on the mechanism of droplet formation in T-junction microchannel
,”
Chem. Eng. Sci.
69
(
1
),
340
351
(
2012
).
64.
J.
Sivasamy
,
T.-N.
Wong
,
N.-T.
Nguyen
 et al, “
An investigation on the mechanism of droplet formation in a microfluidic T-junction
,”
Microfluid. Nanofluid.
11
,
1
10
(
2011
).
65.
J.
Zhang
,
H.
Liu
, and
X.
Zhang
, “
Modeling the deformation of a surfactant-covered droplet under the combined influence of electric field and shear flow
,”
Phys. Fluids
33
,
042109
(
2021
).
66.
S.
Chen
,
K.
Liu
,
C.
Liu
 et al, “
Effects of surface tension and viscosity on the forming and transferring process of microscale droplets
,”
Appl. Surf. Sci.
388
,
196
202
(
2016
).
67.
M. P.
Boruah
,
A.
Sarker
,
P. R.
Randive
 et al, “
Tuning of regimes during two-phase flow through a cross-junction
,”
Phys. Fluids
33
(
12
),
122101
(
2021
).
You do not currently have access to this content.