In this paper, the Large Eddy Simulation (LES) combined with the Schnerr–Sauer cavitation model and the permeable Ffowcs Williams–Hawkings (FW-Hpds) acoustic analogy approach are introduced to study the unsteady cavitation behaviors and the radiated noise characteristics of the transient liquid nitrogen (LN2) cavitating flow around a NACA66 (National Advisory Committee for Aeronautics) hydrofoil. Satisfactory agreement is obtained between the numerical predictions and experimental measurements. The cavitation noise is predicted based on the sound radiation theory for spherical bubbles and compared with the sound pressure levels of non-cavitating flow from the FW-Hpds equation. It is found that the cavity volume acceleration is directly responsible for driving the generation of cavitation noise, and the sound pressure caused by the development of LN2 cavitation is shown to vary with the periodic pulsing cavity volume evolution, indicating a strong link between cavity evolutions and radiated noises. The transient cavitation structures of the sheet and cloud cavitation are well captured, and the evolution features of the cavities and vortex structures are analyzed in detail. The collapse of the detached small cloud cavity downstream is the main mechanism for generating intense acoustic impulses for both sheet and cloud cavitation. While the strong interaction between the re-entrant jet and the main flow results in violent pressure fluctuations, and thus produces instantaneous extreme dipole noise, which accounts for another distinctive mechanism to induce intense acoustic impulses for cloud cavitation, the presented study provides a deep understanding of the nature of cavitation-dominated noise for cryogenic cavitating flow.

1.
J. P.
Franc
and
J. M.
Michel
,
Fundamentals of Cavitation
(
Kluwer Academic Publishers
,
New York
,
2005
).
2.
A.
Kubota
,
H.
Kato
, and
H.
Yamaguchi
, “
A new modelling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section
,”
J. Fluid Mech.
240
,
59
96
(
1992
).
3.
J. B.
Leroux
,
O.
Coutier-Delgosha
, and
J. A.
Astolfi
, “
A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil
,”
Phys. Fluids
17
(
5
),
052101
(
2005
).
4.
G.
Wang
and
M.
Ostoja-Starzewski
, “
Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil
,”
Appl. Math. Model.
31
(
3
),
417
447
(
2007
).
5.
B.
Huang
,
S. C.
Qiu
,
X. B.
Li
,
Q.
Wu
, and
G. Y.
Wang
, “
A review of transient flow structure and unsteady mechanism of cavitating flow
,”
J. Hydrodyn.
31
(
3
),
429
444
(
2019
).
6.
B.
Ji
,
X.
Luo
,
Y.
Wu
,
X.
Peng
, and
Y.
Duan
, “
Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil
,”
Int. J. Multiphase Flow
51
,
33
43
(
2013
).
7.
P.
Kumar
and
R. P.
Saini
, “
Study of cavitation in hydro turbines—A review
,”
Renewable Sustainable Energy Rev.
14
(
1
),
374
383
(
2010
).
8.
J.
Liu
,
S.
Liu
,
Y.
Wu
,
L.
Jiao
,
L.
Wang
, and
Y.
Sun
, “
Numerical investigation of the hump characteristic of a pump–turbine based on an improved cavitation model
,”
Comput. Fluids
68
,
105
111
(
2012
).
9.
X. W.
Luo
,
B.
Ji
, and
Y.
Tsujimoto
, “
A review of cavitation in hydraulic machinery
,”
J. Hydrodyn
28
(
3
),
335
358
(
2016
).
10.
E.
Korkut
and
M.
Atlar
, “
An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers
,”
Ocean Eng.
41
,
1
12
(
2012
).
11.
E.
Kadivar
,
M. V.
Timoshevskiy
,
M. Y.
Nichik
,
E.
Moctar
,
T. E.
Schellin
, and
K. S.
Pervunin
, “
Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems
,”
Phys. Fluids
32
(
5
),
052108
(
2020
).
12.
T.
Hashimoto
,
M.
Yoshida
,
M.
Watanabe
,
K.
Kamijo
, and
Y.
Tsujimoto
, “
Experimental study on rotating cavitation of rocket propellant pump inducers
,”
J. Propul. Power
13
(
4
),
488
494
(
1997
).
13.
Y.
Utturkar
,
J.
Wu
,
G.
Wang
, and
W.
Shyy
, “
Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion
,”
Prog. Aeosp. Sci.
41
(
7
),
558
608
(
2005
).
14.
E.
Goncalves
,
R.
Fortes Patella
,
J.
Rolland
,
B.
Pouffary
, and
G.
Challier
, “
Thermodynamic effect on a cavitating inducer in liquid hydrogen
,”
J. Fluids Eng.
132
(
11
),
111305
(
2010
).
15.
M. H.
Arabnejad
,
A.
Amini
,
M.
Farhat
, and
R. E.
Bensow
, “
Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation
,”
Int. J. Multiphase Flow
119
,
123
143
(
2019
).
16.
M.
Callenaere
,
J. P.
Franc
,
J. M.
Michel
, and
M.
Riondet
, “
The cavitation instability induced by the development of a re-entrant jet
,”
" J. Fluid Mech.
444
,
223
(
2001
).
17.
Q.
Wu
,
B.
Huang
,
G.
Wang
, and
Y.
Gao
, “
Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow
,”
Int. J. Multiphase Flow
74
,
19
33
(
2015
).
18.
C.
Wang
,
B.
Huang
,
G.
Wang
,
M.
Zhang
, and
N.
Ding
, “
Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation
,”
Int. J. Heat Mass Transfer
114
,
769
785
(
2017
).
19.
M.
Dular
,
B.
Stoffel
, and
B.
Širok
, “
Development of a cavitation erosion model
,”
Wear
261
(
5–6
),
642
655
(
2006
).
20.
A.
Peters
,
H.
Sagar
,
U.
Lantermann
, and
O.
El Moctar
, “
Numerical modelling and prediction of cavitation erosion
,”
Wear
338–339
,
189
201
(
2015
).
21.
D.
Wang
,
M.
Atlar
, and
R.
Sampson
, “
An experimental investigation on cavitation, noise, and slipstream characteristics of ocean stream turbines
,”
Proc. Inst. Mech. Eng. Part A
221
(
2
),
219
231
(
2007
).
22.
Y.
He
and
Y.
Liu
, “
Experimental research into time–frequency characteristics of cavitation noise using wavelet scalogram
,”
Appl. Acoust.
72
(
10
),
721
731
(
2011
).
23.
A. K.
Lidtke
,
V. F.
Humphrey
, and
S. R.
Turnock
, “
Feasibility study into a computational approach for marine propeller noise and cavitation modelling
,”
Ocean Eng.
120
,
152
159
(
2016
).
24.
M.
Harrison
, “
An experimental study of single bubble cavitation noise
,”
J. Acoust. Soc. Am.
24
(
6
),
776
782
(
1952
).
25.
S. L.
Ceccio
and
C. E.
Brennen
, “
Observations of the dynamics and acoustics of travelling bubble cavitation
,”
J. Fluid Mech.
233
,
633
660
(
1991
).
26.
L.
d'Agostino
and
C. E.
Brennen
, “
Linearized dynamics of spherical bubble clouds
,”
J. Fluid Mech.
199
,
155
176
(
1989
).
27.
M.
Chudina
, “
Noise as an indicator of cavitation in a centrifugal pump
,”
Acoust. Phys.
49
(
4
),
463
474
(
2003
).
28.
L.
Dong
,
Y.
Zhao
, and
C.
Dai
, “
Detection of inception cavitation in centrifugal pump by fluid-borne noise diagnostic
,”
Shock Vib.
2019
,
9641478
.
29.
M. R.
Bagheri
,
M. S.
Seif
,
H.
Mehdigholi
, and
O.
Yaakob
, “
Analysis of noise behaviour for marine propellers under cavitating and non-cavitating conditions
,”
Ships Offshore Struct.
12
(
1
),
1
8
(
2017
).
30.
J.
Jablonská
,
M.
Kozubková
,
M.
Mahdal
,
P.
Marcalík
,
J.
Tůma
,
M.
Bojko
, and
L.
Hružík
, “
Spectral analysis of gaseous cavitation in water through multiphase mathematical and acoustic methods
,”
Phys. Fluids
33
(
8
),
085128
(
2021
).
31.
M. T.
Khoo
,
J. A.
Venning
,
B. W.
Pearce
, and
P. A.
Brandner
, “
Nucleation and cavitation number effects on tip vortex cavitation dynamics and noise
,”
Exp. Fluids
62
(
10
),
216
(
2021
).
32.
T.
Sun
,
Y.
Ding
,
H.
Huang
,
B.
Xie
, and
G.
Zhang
, “
Numerical study on the effects of modulated ventilation on unsteady cavity dynamics and noise patterns
,”
Phys. Fluids
33
(
12
),
123307
(
2021
).
33.
A.
Ebrahimi
,
A. H.
Razaghian
,
A.
Tootian
, and
M. S.
Seif
, “
An experimental investigation of hydrodynamic performance, cavitation, and noise of a normal skew B-series marine propeller in the cavitation tunnel
,”
Ocean Eng.
238
,
109739
(
2021
).
34.
B.
Aktas
,
M.
Atlar
,
S.
Turkmen
,
W.
Shi
,
R.
Sampson
,
E.
Korkut
, and
P.
Fitzsimmons
, “
Propeller cavitation noise investigations of a research vessel using medium size cavitation tunnel tests and full-scale trials
,”
Ocean Eng.
120
,
122
135
(
2016
).
35.
D.
Wittekind
and
M.
Schuster
, “
Propeller cavitation noise and background noise in the sea
,”
Ocean Eng.
120
,
116
121
(
2016
).
36.
J.
Bosschers
, “
A semi-empirical prediction method for broadband hull-pressure fluctuations and underwater radiated noise by propeller tip vortex cavitation
,”
J. Mar. Sci. Eng.
6
(
2
),
49
(
2018
).
37.
M. J.
Lighthill
, “
On sound generated aerodynamically I. General theory
,”
Proc. R. Soc. London, Ser. A
211
(
1107
),
564
587
(
1952
).
38.
D. Q.
Li
,
J.
Hallander
, and
T.
Johansson
, “
Predicting underwater radiated noise of a full scale ship with model testing and numerical methods
,”
Ocean Eng.
161
,
121
135
(
2018
).
39.
J. E.
Ffowcs Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. London., Ser. A
264
(
1151
),
321
342
(
1969
).
40.
J. O.
Mo
and
J. H.
Choi
, “
Numerical investigation of unsteady flow and aerodynamic noise characteristics of an automotive axial cooling fan
,”
Appl. Sci
10
(
16
),
5432
(
2020
).
41.
J.
Tu
,
L.
Gan
,
S.
Ma
, and
H.
Zhang
, “
Flow noise characteristics analysis of underwater high-speed vehicle based on LES/FW-H coupling model
,”
Acoust. Aust.
47
(
1
),
91
104
(
2019
).
42.
F.
Salvatore
and
S.
Ianniello
, “
Preliminary results on acoustic modelling of cavitating propellers
,”
Comput. Mech.
32
(
4
),
291
300
(
2003
).
43.
S.
Ianniello
,
R.
Muscari
, and
D.
Mascio
, “
Ship underwater noise assessment by the Acoustic Analogy part II: Hydroacoustic analysis of a ship scaled model
,”
J. Mar. Sci. Technol.
19
(
1
),
52
74
(
2014
).
44.
S.
Ianniello
,
R.
Muscari
, and
D.
Mascio
, “
Ship underwater noise assessment by the acoustic analogy, part III: Measurements versus numerical predictions on a full-scale ship
,”
J. Mar. Sci. Technol.
19
(
2
),
125
142
(
2014
).
45.
G.
Ku
,
J.
Cho
,
C.
Cheong
, and
H.
Seol
, “
Numerical investigation of tip-vortex cavitation noise of submarine propellers using hybrid computational hydro-acoustic approach
,”
Ocean Eng.
238
,
109693
(
2021
).
46.
J.
Hu
,
X.
Ning
,
W.
Zhao
,
F.
Li
,
J.
Ma
,
W.
Zhang
,
S.
Sun
,
M.
Zhou
, and
C.
Lin
, “
Numerical simulation of the cavitating noise of contra-rotating propellers based on detached eddy simulation and the Ffowcs Williams–Hawkings acoustics equation
,”
Phys. Fluids
33
(
11
),
115117
(
2021
).
47.
A. K.
Lidtke
,
S.
Turnock
, and
V. R.
Humphrey
, “
Multi-scale modelling of cavitation-induced pressure around the Delft twist 11 hydrofoil
,” in
31st Symposium on Naval Hydrodynamics
(
2016
).
48.
H. S.
Hwang
,
K. J.
Paik
,
S. H.
Lee
, and
G.
Song
, “
Numerical study on the vibration and noise characteristics of a Delft Twist11 hydrofoil
,”
J. Mar. Sci. Eng.
9
(
2
),
144
(
2021
).
49.
A.
Yu
,
X.
Wang
,
Z.
Zou
,
Q.
Tang
,
H.
Chen
, and
D.
Zhou
, “
Investigation of cavitation noise in cavitating flows around an NACA0015 hydrofoil
,”
Appl. Sci.
9
(
18
),
3736
(
2019
).
50.
Z.
Li
,
Z.
Qian
, and
B.
Ji
, “
Transient cavitating flow structure and acoustic analysis of a hydrofoil with whalelike wavy leading edge
,”
Appl. Math. Model.
85
,
60
88
(
2020
).
51.
X.
Bai
,
H.
Cheng
, and
B.
Ji
, “
LES investigation of the noise characteristics of sheet and tip leakage vortex cavitating flow
,”
Int. J. Multiphase Flow
146
,
103880
(
2022
).
52.
W. S.
Choi
,
Y.
Choi
,
S. Y.
Hong
,
J. H.
Song
,
H. W.
Kwon
, and
C. M.
Jung
, “
Turbulence-induced noise of a submerged cylinder using a permeable FW–H method
,”
Int. J. Nav. Archit. Ocean Eng.
8
(
3
),
235
242
(
2016
).
53.
S.
Ianniello
,
R.
Muscari
, and
D.
Mascio
, “
Ship underwater noise assessment by the acoustic analogy. Part I: Nonlinear analysis of a marine propeller in a uniform flow
,”
J. Mar. Sci. Technol.
18
(
4
),
547
570
(
2013
).
54.
A. K.
Lidtke
,
S. R.
Turnock
, and
V. F.
Humphrey
, “
Characterisation of sheet cavity noise of a hydrofoil using the Ffowcs Williams–Hawkings acoustic analogy
,”
Comput. Fluids
130
,
8
23
(
2016
).
55.
P.
Di Francescantonio
, “
A new boundary integral formulation for the prediction of sound radiation
,”
J. Sound Vibr.
202
(
4
),
491
509
(
1997
).
56.
J.
Hord
,
L. M.
Anderson
, and
W. J.
Hall
,
Cavitation in Liquid Cryogens(I): Venturi
(
National Bureau of Standards
,
Boulder, CO
,
1972
).
57.
J.
Hord
, "
Cavitation in liquid cryogens(II): Hydrofoil
,"
Technical Report No. CR-2156
,
NASA Contractor
,
1973
.
58.
J.
Hord
, "
Cavitation in liquid cryogens(III): Ogive
,"
Technical Report No. CR-2242
,
NASA Contractor
,
1973
.
59.
J.
Zhu
,
S.
Wang
, and
X.
Zhang
, “
Influences of thermal effects on cavitation dynamics in liquid nitrogen through venturi tube
,”
Phys. Fluids
32
(
1
),
012105
(
2020
).
60.
H.
Zhang
,
Z.
Zuo
,
K. A.
Mørch
, and
S.
Liu
, “
Thermodynamic effects on Venturi cavitation characteristics
,”
Phys. Fluids
31
(
9
),
097107
(
2019
).
61.
Y.
Ito
,
K.
Sawasaki
,
N.
Tani
,
T.
Nagasaki
, and
T.
Nagashima
, “
A blowdown cryogenic cavitation tunnel and CFD treatment for flow visualization around a foil
,”
J. Therm. Sci
14
(
5
),
346
351
(
2005
).
62.
M.
Giorgi
,
A.
Ficarella
, and
M.
Tarantino
, “
Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization
,”
Int. J. Heat Fluid Flow
39
,
160
172
(
2013
).
63.
T.
Chen
,
H.
Chen
,
W.
Liang
,
B.
Huang
, and
L.
Xiang
, “
Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition
,”
Int. J. Heat Mass Transfer
132
,
618
630
(
2019
).
64.
J.
Zhu
,
H.
Xie
,
K.
Feng
,
X.
Zhang
, and
M.
Si
, “
Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube
,”
Int. J. Heat Mass Transfer
112
,
544
552
(
2017
).
65.
X.
Gao
,
H.
Chen
,
J.
Zhu
,
S.
Wang
, and
X.
Zhang
, “
Visual experimental study on liquid-nitrogen cavitating flow on NACA 66 hydrofoil
,”
J. Propul. Power
36
(
1
),
88
94
(
2020
).
66.
J. P.
Gustavsson
,
K. C.
Denning
, and
C.
Segal
, “
Hydrofoil cavitation under strong thermodynamic effect
,”
J. Fluids Eng.
130
(
9
),
091303
(
2008
).
67.
T.
Sun
,
Y.
Wei
,
L.
Zou
,
Y.
Jiang
,
C.
Xu
, and
Z.
Zong
, “
Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid
,”
Int. J. Multiphase Flow
111
,
82
100
(
2019
).
68.
S.
Wang
,
J.
Zhu
,
H.
Xie
,
F.
Zhang
, and
X.
Zhang
, “
Studies on thermal effects of cavitation in LN2 flow over a twisted hydrofoil based on large eddy simulation
,”
Cryogenics
97
,
40
49
(
2019
).
69.
A. D.
Le
,
J.
Okajima
, and
Y.
Iga
, “
Numerical simulation study of cavitation in liquefied hydrogen
,”
Cryogenics
101
,
29
35
(
2019
).
70.
X.
Zhang
,
Z.
Wu
,
S.
Xiang
, and
L.
Qiu
, “
Modeling cavitation flow of cryogenic fluids with thermodynamic phase-change theory
,”
Chin. Sci. Bull.
58
(
4
),
567
574
(
2013
).
71.
J.
Zhu
,
Y.
Chen
,
D.
Zhao
, and
X.
Zhang
, “
Extension of the Schnerr–Sauer model for cryogenic cavitation
,”
Eur. J. Mech. B
52
,
1
10
(
2015
).
72.
X. F.
Ma
,
Y. J.
Wei
,
C.
Wang
,
W.
Cao
, and
W.
Huang
, “
Numerical simulation of liquid nitrogen around hydrofoil cryogenic cavitation
,” in
Applied Mechanics and Materials
(
Trans. Tech. Publications, Ltd
.,
2012
).
73.
X.
Zhang
,
J.
Zhu
,
L.
Qiu
, and
X.
Zhang
, “
Calculation and verification of dynamical cavitation model for quasi-steady cavitating flow
,”
Int. J. Heat Mass Transfer
86
,
294
301
(
2015
).
74.
T.
Chen
,
B.
Huang
, and
G.
Wang
, “
Numerical study of cavitating flows in a wide range of water temperatures with special emphasis on two typical cavitation dynamics
,”
Int. J. Heat Mass Transfer
101
,
886
900
(
2016
).
75.
X.
Li
,
T.
Shen
,
P.
Li
,
X.
Guo
, and
Z.
Zhu
, “
Extended compressible thermal cavitation model for the numerical simulation of cryogenic cavitating flow
,”
Int. J. Hydrogen Energy
45
(
16
),
10104
10118
(
2020
).
76.
X.
Long
,
Q.
Liu
,
B.
Ji
, and
Y.
Lu
, “
Numerical investigation of two typical cavitation shedding dynamics flow in liquid hydrogen with thermodynamic effects
,”
Int. J. Heat Mass Transfer
109
,
879
893
(
2017
).
77.
A.
Wei
,
L.
Yu
,
R.
Gao
,
W.
Zhang
, and
X.
Zhang
, “
Unsteady cloud cavitation mechanisms of liquid nitrogen in convergent–divergent nozzle
,”
Phys. Fluids
33
(
9
),
092116
(
2021
).
78.
T.
Chen
,
H.
Chen
,
W.
Liu
,
B.
Huang
, and
G.
Wang
, “
Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode
,”
Appl. Therm. Eng.
156
,
63
76
(
2019
).
79.
J.
Zhu
,
D.
Zhao
,
L.
Xu
, and
X.
Zhang
, “
Interactions of vortices, thermal effects and cavitation in liquid hydrogen cavitating flows
,”
Int. J. Hydrogen Energy
41
(
1
),
614
631
(
2016
).
80.
Y.
Liu
,
X.
Li
,
M.
Ge
,
L.
Li
, and
Z.
Zhu
, “
Numerical investigation of transient liquid nitrogen cavitating flows with special emphasis on force evolution and entropy features
,”
Cryogenics
113
,
103225
(
2021
).
81.
S.
Klein
, “
Comparison between water and liquid nitrogen pressure surge experiments to analyze cavitation induced noise growth
,” in
11th International Symposium on Cavitation
(
2021
).
82.
M.
Wang
,
J. B.
Freund
, and
S. K.
Lele
, “
Computational prediction of flow-generated sound
,”
Annu. Rev. Fluid Mech.
38
,
483
512
(
2006
).
83.
J. S.
Smagorinsky
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
84.
G. H.
Schnerr
and
J.
Sauer
, “
Physical and numerical modeling of unsteady cavitation dynamics
,” in
Fourth International Conference on Multiphase Flow
,
New Orleans
,
2001
.
85.
F.
Farassat
, “
Derivation of formulations 1 and 1A of Farassat
,”
NASA Technical Report No. NASA/TM-2007-214853
(
2007
).
86.
K. S.
Brentner
, “
An efficient and robust method for predicting helicopter highspeed impulsive noise
,”
J. Sound Vib.
203
,
87
100
(
1997
).
87.
C. E.
Brennen
,
Fundamentals of Multiphase Flow
(
Cambridge University Press
,
2005
).
88.
I.
Mary
and
P.
Sagaut
, “
Large eddy simulation of flow around an airfoil near stall
,”
AIAA J.
40
(
6
),
1139
1145
(
2002
).
89.
L.
Sunil
and
S. S.
Girimaji
, “
Partially averaged Navier–Stokes (PANS) method for turbulence simulations: Flow past a circular cylinder
,”
J. Fluids Eng.
132
(
12
),
121202
(
2010
).
90.
B.
Ji
,
X. W.
Luo
,
R. E.
Arndt
,
X.
Peng
, and
Y.
Wu
, “
Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil
,”
Int. J. Multiphase Flow
68
,
121
134
(
2015
).
91.
E. W.
Lemmon
,
M. L.
Huber
, and
M. O.
McLinden
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1
(
National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg
,
2013
).
92.
M.
Cheng
, “
A summary of acoustic characteristics and control techniques of underwater non-cavitation thruster
,”
Proc. Inst. Mech. Eng., Part C
233
(
18
),
6339
6356
(
2019
).
93.
S.
Kim
,
C.
Cheong
, and
W. G.
Park
, “
Numerical investigation into effects of viscous flux vectors on hydrofoil cavitation flow and its radiated flow noise
,”
Appl. Sci.
8
(
2
),
289
(
2018
).
94.
S. R.
Gonzalez-Avila
,
F.
Denner
, and
C. D.
Ohl
, “
The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall
,”
Phys. Fluids
33
(
3
),
032118
(
2021
).
You do not currently have access to this content.