The passage of a bubble through an immiscible horizontal liquid–liquid interface has a wide range of applications, from chemical processes to microfluidic devices. Buoyancy governs this passage of the bubble, and at the liquid–liquid interface, the bubble encounters a downward pulling force due to surface tension. Depending on the volume of the bubble, it may pass through or become trapped at the interface. In this study, for the first time, we proposed the idea of trapped bubble removal from a liquid–liquid interface with the aid of a wettability-patterned cone. The bubble detachment dynamic is investigated using numerical results and theoretical analysis. The effect of fluid properties and cone parameters on bubble detachment has been extensively studied. It is found that density contrast (ρr) and viscosity contrast (μr) of both the liquids, surface tension ratio (σr), bubble diameter (d0), wettability of the cone (θ), and cone angle (α) play a crucial role in bubble detachment. Here, we studied the effect of each parameter on the bubble detachment and, based on that, identified two distinct regimes, e.g., detached regime and non-detached regime. The regime map is represented by two non-dimensional groups βco and ψ, which are functions of Bond number (Bo), Ohnesorge number (Oh), α, and θ. Furthermore, the transport characteristics of the bubble on the cone after the detachment indicate that the bubble velocity decreased as it moved from the narrower to the wider section of the cone. These findings could be useful in the removal of trapped bubbles from a liquid–liquid interface in small-scale chemical industries.

1.
D. C.
Blanchard
, “
The electrification of the atmosphere by particles from bubbles in the sea
,”
Prog. Oceanogr.
1
,
73
202
(
1963
).
2.
G. O.
Stride
, “
The respiratory bubble of the aquatic beetle, potamodytes tuberosus, Hinton
,”
Nature
171
(
4359
),
885
886
(
1953
).
3.
M. K.
Tripathi
,
K. C.
Sahu
, and
R.
Govindarajan
, “
Dynamics of an initially spherical bubble rising in quiescent liquid
,”
Nat. Commun.
6
(
1
),
6268
(
2015
).
4.
Y.
Kim
,
D.
Choi
,
M.
Cui
,
J.
Lee
,
B.
Kim
,
K.
Park
,
H.
Jung
, and
B.
Lee
, “
Dissolved air flotation separation for pretreatment of membrane bioreactor in domestic wastewater treatment
,”
J. Water Supply Res. Technol. AQUA
64
(
2
),
186
193
(
2015
).
5.
S. H.
Nekoo
and
S.
Fatemi
, “
Experimental study and adsorption modeling of COD reduction by activated carbon for wastewater treatment of oil refinery
,”
Iran. J. Chem. Chem. Eng.
32
(
3
),
81
89
(
2013
).
6.
B.
Gal-Or
,
G. E.
Klinzing
, and
L. L.
Tavlarides
, “
Bubble and drop phenomena
,”
Ind. Eng. Chem.
61
(
2
),
21
34
(
1969
).
7.
K.
Zeng
and
D.
Zhang
, “
Recent progress in alkaline water electrolysis for hydrogen production and applications
,”
Prog. Energy Combust. Sci.
36
(
3
),
307
326
(
2010
).
8.
W.
Li
,
J.
Zhang
,
Z.
Xue
,
J.
Wang
, and
L.
Jiang
, “
Spontaneous and directional bubble transport on porous copper wires with complex shapes in aqueous media
,”
ACS Appl. Mater. Interfaces
10
(
3
),
3076
3081
(
2018
).
9.
I. U.
Chowdhury
,
P.
Sinha Mahapatra
, and
A. K.
Sen
, “
Self-driven droplet transport: Effect of wettability gradient and confinement
,”
Phys. Fluids
31
(
4
),
042111
(
2019
).
10.
J. M.
Morrissette
,
P. S.
Mahapatra
,
A.
Ghosh
,
R.
Ganguly
, and
C. M.
Megaridis
, “
Rapid, self-driven liquid mixing on open-surface microfluidic platforms
,”
Sci. Rep.
7
(
1
),
1800
(
2017
).
11.
A.
Ghosh
,
R.
Ganguly
,
T. M.
Schutzius
, and
C. M.
Megaridis
, “
Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms
,”
Lab Chip
14
(
9
),
1538
1550
(
2014
).
12.
W.
Feng
and
B.
Bhushan
, “
Multistep wettability gradient in bioinspired triangular patterns for water condensation and transport
,”
J. Colloid Interface Sci.
560
,
866
873
(
2020
).
13.
T. M.
Thomas
,
I. U.
Chowdhury
,
K.
Dhivyaraja
,
P. S.
Mahapatra
,
A.
Pattamatta
, and
M. K.
Tiwari
, “
Droplet dynamics on a wettability patterned surface during spray impact
,”
Processes
9
(
3
),
555
(
2021
).
14.
S.
Lowrey
,
K.
Misiiuk
,
R.
Blaikie
, and
A.
Sommers
, “
Survey of micro/nanofabricated chemical, topographical, and compound passive wetting gradient surfaces
,”
Langmuir
38
,
605
(
2022
).
15.
I. U.
Chowdhury
,
P. S.
Mahapatra
, and
A. K.
Sen
, “
Shape evolution of drops on surfaces of different wettability gradients
,”
Chem. Eng. Sci.
229
,
116136
(
2021
).
16.
X.
Tang
,
J.
Huang
,
Z.
Guo
, and
W.
Liu
, “
A combined structural and wettability gradient surface for directional droplet transport and efficient fog collection
,”
J. Colloid Interface Sci.
604
,
526
536
(
2021
).
17.
J.
Van Hulle
,
F.
Weyer
,
S.
Dorbolo
, and
N.
Vandewalle
, “
Capillary transport from barrel to clamshell droplets on conical fibers
,”
Phys. Rev. Fluids
6
(
2
),
024501
(
2021
).
18.
D.
Gurera
and
B.
Bhushan
, “
Movement of air bubbles under various liquids using bioinspired conical surfaces
,”
J. Colloid Interface Sci.
582
,
41
50
(
2021
).
19.
Y.
Li
,
H.
Wu
, and
F.
Wang
, “
Stagnation of a droplet on a conical substrate determined by the critical curvature ratio
,”
J. Phys. D: Appl. Phys.
49
(
8
),
085304
(
2016
).
20.
C.
Yu
,
X.
Zhu
,
K.
Li
,
M.
Cao
, and
L.
Jiang
, “
Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface
,”
Adv. Funct. Mater.
27
(
29
),
1701605
(
2017
).
21.
H.
Ma
,
M.
Cao
,
C.
Zhang
,
Z.
Bei
,
K.
Li
,
C.
Yu
, and
L.
Jiang
, “
Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments
,”
Adv. Funct. Mater.
28
(
7
),
1705091
(
2018
).
22.
C.
Yu
,
M.
Cao
,
Z.
Dong
,
J.
Wang
,
K.
Li
, and
L.
Jiang
, “
Spontaneous and directional transportation of gas bubbles on superhydrophobic cones
,”
Adv. Funct. Mater.
26
(
19
),
3236
3243
(
2016
).
23.
J.
Magnaudet
and
M. J.
Mercier
, “
Particles, drops, and bubbles moving across sharp interfaces and stratified layers
,”
Annu. Rev. Fluid Mech.
52
,
61
91
(
2020
).
24.
J.
Tan
,
Y.
Lu
,
J.
Xu
, and
G.
Luo
, “
Modeling investigation of mass transfer of gas–liquid–liquid dispersion systems
,”
Sep. Purif. Technol.
108
,
111
118
(
2013
).
25.
S. S.
Tsai
,
J. S.
Wexler
,
J.
Wan
, and
H. A.
Stone
, “
Conformal coating of particles in microchannels by magnetic forcing
,”
Appl. Phys. Lett.
99
(
15
),
153509
(
2011
).
26.
A.
Ghorbanpour-Arani
,
M.-H.
Rahimian
, and
R.
Haghani-Hassan-Abadi
, “
Numerical simulation of dissolved air flotation using a lattice Boltzmann method
,”
Phys. Rev. E
101
(
2
),
023105
(
2020
).
27.
Y.
Su
,
G.
Chen
,
Y.
Zhao
, and
Q.
Yuan
, “
Intensification of liquid–liquid two-phase mass transfer by gas agitation in a microchannel
,”
AIChE J.
55
(
8
),
1948
1958
(
2009
).
28.
K.
Singh
and
H.-J.
Bart
, “
Passage of a bubble through the interface between a shear-thinning heavier liquid and a Newtonian lighter liquid
,”
Chem. Eng. Commun.
207
(
6
),
790
807
(
2020
).
29.
T. S.
Emery
,
P. A.
Raghupathi
, and
S. G.
Kandlikar
, “
Flow regimes and transition criteria during passage of bubbles through a liquid–liquid interface
,”
Langmuir
34
(
23
),
6766
6776
(
2018
).
30.
G. A.
Greene
,
J. C.
Chen
, and
M. T.
Conlin
, “
Bubble induced entrainment between stratified liquid layers
,”
Int. J. Heat Mass Transfer
34
(
1
),
149
157
(
1991
).
31.
F.
Boyer
,
C.
Lapuerta
,
S.
Minjeaud
,
B.
Piar
, and
M.
Quintard
, “
Cahn–Hilliard/Navier–Stokes model for the simulation of three-phase flows
,”
Transp. Porous Media
82
(
3
),
463
483
(
2010
).
32.
M.
Kemiha
,
E.
Olmos
,
W.
Fei
,
S.
Poncin
, and
H. Z.
Li
, “
Passage of a gas bubble through a liquid-liquid interface
,”
Ind. Eng. Chem. Res.
46
(
19
),
6099
6104
(
2007
).
33.
A.
Edrisi
,
M.
Dadvar
, and
B.
Dabir
, “
A novel experimental procedure to measure interfacial tension based on dynamic behavior of rising bubble through interface of two immiscible liquids
,”
Chem. Eng. Sci.
231
,
116255
(
2021
).
34.
R.
Bonhomme
,
J.
Magnaudet
,
F.
Duval
, and
B.
Piar
, “
Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface
,”
J. Fluid Mech.
707
,
405
(
2012
).
35.
J.
Farhadi
,
A.
Sattari
, and
P.
Hanafizadeh
, “
Passage of a rising bubble through a liquid-liquid interface: A flow map for different regimes
,”
Can. J. Chem. Eng.
100
,
375
316
(
2022
).
36.
C.
Multiphysics
, “
Comsol multiphysics CFD module user guide (version 5.3 a)
,”
COMSOL,
Inc. (
2015
), pp.
208
265
.
37.
C.-Y.
Zhang
,
H.
Ding
,
P.
Gao
, and
Y.-L.
Wu
, “
Diffuse interface simulation of ternary fluids in contact with solid
,”
J. Comput. Phys.
309
,
37
51
(
2016
).
38.
I. U.
Chowdhury
,
P. S.
Mahapatra
,
A. K.
Sen
,
A.
Pattamatta
, and
M. K.
Tiwari
, “
Autonomous transport and splitting of a droplet on an open surface
,”
Phys. Rev. Fluids
6
(
9
),
094003
(
2021
).
39.
F.
Boyer
and
C.
Lapuerta
, “
Study of a three component Cahn-Hilliard flow model
,”
ESAIM: Math. Modell. Numer. Anal.
40
(
4
),
653
687
(
2006
).
40.
F.
Boyer
and
S.
Minjeaud
, “
Numerical schemes for a three component Cahn-Hilliard model
,”
ESAIM: Math. Modell. Numer. Anal.
45
(
4
),
697
738
(
2011
).
41.
X.
Yan
,
Y.
Jia
,
L.
Wang
, and
Y.
Cao
, “
Drag coefficient fluctuation prediction of a single bubble rising in water
,”
Chem. Eng. J.
316
,
553
562
(
2017
).
42.
C.
Luo
, “
Theoretical exploration of barrel-shaped drops on cactus spines
,”
Langmuir
31
,
11809
11813
(
2015
).
43.
M.
Reddy
,
M.
Manivannan
,
M. G.
Basavaraj
, and
S. P.
Thampi
, “
Statics and dynamics of drops spreading on a liquid-liquid interface
,”
Phys. Rev. Fluids
5
(
10
),
104006
(
2020
).
You do not currently have access to this content.