We study the gas–water transient imbibition and drainage processes in two-dimensional nanoporous media using our recently developed lattice Boltzmann model. To describe the microscopic molecular interactions, the model employs a pseudopotential that correlates the local density and interaction strength to perform simulation at a mesoscopic scale. The primary interest is ganglia dynamics in the nanoporous media affected by fluid and geometrical properties of the porous structure. We performed sensitivity analyses on the fluid and rock characteristics such as the Euler number, gas–water interfacial area, water film area, capillary pressure, pore size distribution, specific surface area, and wettability. The simulation results revealed the fingering nature of the nonwetting phase. In the imbibition process, the flow pathway of water results in isolated and trapped gas bubble clusters because of the strong attraction between water and solid surfaces. In the drainage process, the pressure difference between the gas phase and the water phase depends on both the capillary pressure and the disjoining pressure due to the presence of water film. Pore topography and specific surface area control the continuity of the fluid phases in the imbibition process. In nonwet systems, the water phase starts fingering in the nanoporous system. The present work elucidates the microscopic ganglia dynamics of gas–water two-phase flow in nanoporous media. The microscopic scale details will help establish the macroscopic flow equation to accurately predict two-phase flow in shale gas, tight oil, and caprock seals.

1.
L.
Zhang
,
Z.
Chen
, and
Y.
Zhao
,
Well Production Performance Analysis for Shale Gas Reservoirs
, Developments in Petroleum Science Series, 1st ed. (
Elsevier
,
Cambridge, MA, USA
,
2019
).
2.
Y.
Wu
,
L.
Cheng
,
L.
Ma
 et al., “
A transient two-phase flow model for production prediction of tight gas wells with fracturing fluid-induced formation damage
,”
J. Pet. Sci. Eng.
199
,
108351
(
2021
).
3.
R.
Zhang
,
J.
Wu
,
Y.
Zhao
 et al., “
Numerical simulation of the feasibility of supercritical CO2 storage and enhanced shale gas recovery considering complex fracture networks
,”
J. Pet. Sci. Eng.
204
(
10
),
108671
(
2021
).
4.
R.
Nie
,
J.
Li
,
Q.
Deng
 et al., “
Modeling transient flow behavior of eccentric horizontal well in bi-zonal formation
,”
J. Pet. Sci. Eng.
208
(
4
),
109261
(
2022
).
5.
S.
Luo
,
C.
Ding
,
H.
Cheng
 et al., “
Estimated ultimate recovery prediction of fractured horizontal wells in tight oil reservoirs based on deep neural networks
,”
Adv. Geo-Energy Res.
6
(
2
),
111
122
(
2022
).
6.
W.
Xiong
,
Y. L.
Zhao
,
J. H.
Qin
 et al., “
Phase equilibrium modeling for confined fluids in nanopores using an association equation of state
,”
J. Supercrit. Fluids
169
,
105118
(
2021
).
7.
D.
Feng
,
S.
Bakhshian
,
K.
Wu
 et al., “
Wettability effects on phase behavior and interfacial tension in shale nanopores
,”
Fuel
290
(
15
),
119983
(
2021
).
8.
T.
Zhang
,
X.
Li
,
Z.
Sun
 et al., “
An analytical model for relative permeability in water-wet nanoporous media
,”
Chem. Eng. Sci.
174
,
1
12
(
2017
).
9.
J. W.
Lund
and
D. H.
Freeston
 et al., “
Direct utilization of geothermal energy 2010 worldwide review
,”
Geothermics
40
(
3
),
159
180
(
2011
).
10.
L.
Huang
,
W.
Zhou
,
H.
Xu
 et al., “
Dynamic fluid states in organic-inorganic nanocomposite: Implications for shale gas recovery and CO2 sequestration
,”
Chem. Eng. J.
411
,
128423
(
2021
).
11.
Y.
Xu
,
G.
Sheng
,
H.
Zhao
 et al., “
A new approach for gas-water flow simulation in multi-fractured horizontal wells of shale gas reservoirs
,”
J. Pet. Sci. Eng.
199
,
108292
(
2021
).
12.
F.
Javadpour
,
D.
Fisher
, and
M.
Unsworth
, “
Nanoscale gas flow in shale sediments
,”
J. Can. Pet. Technol.
46
(
10
),
55
61
(
2007
).
13.
M.
Shaat
, “
Hybrid continuum-molecular modeling of fluid slip flow
,”
Phys. Fluids
32
(
12
),
122009
(
2020
).
14.
L.
Zhang
,
H.
Liang
,
Y.
Zhao
 et al., “
Gas transport characteristics in shale matrix based on multiple mechanisms
,”
Chem. Eng. J.
386
,
124002
(
2020
).
15.
L.
Zhang
,
B.
Shan
,
Y.
Zhao
 et al., “
Review of micro seepage mechanisms in shale gas reservoirs
,”
Int. J. Heat Mass Transfer
139
,
144
179
(
2019
).
16.
K.
Wu
,
Z.
Chen
,
J.
Li
 et al., “
Wettability effect on nanoconfined water flow
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
13
),
3358
3363
(
2017
).
17.
J.
Bear
and
A. H. D.
Cheng
,
2010
.
Modeling Groundwater Flow and Contaminant Transport
(
Springer
Dordrecht Heidelberg London, New York)
.
18.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 1st ed. (
Academic Press
,
Burlington, MA, USA
,
1985
).
19.
T.
Zhang
,
F.
Javadpour
,
J.
Li
 et al., “
Pore-scale perspective of gas/water two-phase flow in shale
,”
SPE J.
26
(
02
),
828
846
(
2021
).
20.
J.
Cai
,
T.
Jin
,
J.
Kou
 et al., “
Lucas–Washburn equation-based modeling of capillary-driven flow in porous systems
,”
Langmuir
37
(
5
),
1623
1636
(
2021
).
21.
G.
Longmuir
, “
Pre-Darcy flow: A missing piece of the improved oil recovery puzzle?
,” in
SPE/DOE Fourteenth Symposium on Improved Oil Recovery
(
OnePetro
,
2004
).
22.
J.
Zhong
,
A.
Abedini
,
L.
Xu
 et al., “
Nanomodel visualization of fluid injections in tight formations
,”
Nanoscale
10
(
46
),
21994
22002
(
2018
).
23.
T. A.
Ho
and
A.
Striolo
, “
Water and methane in shale rocks: Flow pattern effects on fluid transport and pore structure
,”
AIChE J.
61
(
9
),
2993
2999
(
2015
).
24.
H.
Yu
,
H.
Xu
,
J.
Fan
 et al., “
Transport of shale gas in microporous/nanoporous media: Molecular to pore-scale simulations
,”
Energy Fuels
35
(
2
),
911
943
(
2021
).
25.
D. G.
Avraam
and
A. C.
Payatakes
, “
Flow regimes and relative permeabilities during steady-state two-phase flow in porous media
,”
J. Fluid Mech.
293
,
207
236
(
1995
).
26.
A. L.
Herring
,
J.
Gilby
,
Z.
Li
 et al., “
Observations of nonwetting phase snap-off during drainage
,”
Adv. Water Resour.
121
,
32
43
(
2018
).
27.
A.
Salama
,
J.
Cai
,
J.
Kou
 et al., “
Investigation of the dynamics of immiscible displacement of a ganglion in capillaries
,”
Capillarity
4
(
2
),
31
44
(
2021
).
28.
M.
Rücker
,
S.
Berg
,
R. T.
Armstrong
 et al., “
From connected pathway flow to ganglion dynamics
,”
Geophys. Res. Lett.
42
(
10
),
3888
3894
, (
2015
).
29.
A. L.
Herring
,
E. J.
Harper
,
L.
Andersson
 et al., “
Effect of fluid topology on residual nonwetting phase trapping: Implications for geologic CO2 sequestration
,”
Adv. Water Resour.
62
,
47
58
(
2013
).
30.
A. L.
Herring
,
L.
Andersson
,
S.
Schlüter
 et al., “
Efficiently engineering pore-scale processes: The role of force dominance and topology during nonwetting Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media
,”
Adv. Water Resour.
79
,
91
102
(
2015
).
31.
R. T.
Armstrong
,
J. E.
Mcclure
,
M. A.
Berrill
 et al., “
Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow
,”
Phys. Rev. E
94
(
4
),
043113
(
2016
).
32.
S.
Schlüter
,
S.
Berg
,
M.
Rücker
 et al., “
Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media
,”
Water Resour. Res.
52
(
3
),
2194
2205
, (
2016
).
33.
S.
Khorsandi
,
L.
Li
, and
R. T.
Johns
, “
Equation of state for relative permeability, including hysteresis and wettability alteration
,”
SPE J.
22
(
06
),
1915
1928
(
2017
).
34.
H. H.
Khanamiri
and
O.
Torsaeter
, “
Fluid topology in pore scale two-phase flow imaged by synchrotron X-ray microtomography
,”
Water Resour. Res.
54
(
3
),
1905
1917
, (
2018
).
35.
D.
Picchi
and
I.
Battiato
, “
Relative permeability scaling from pore scale flow regimes
,”
Water Resour. Res.
55
(
4
),
3215
3233
, (
2019
).
36.
D.
Picchi
and
I.
Battiato
, “
The impact of pore-scale flow regimes on upscaling of immiscible two-phase flow in porous media
,”
Water Resour. Res.
54
(
9
),
6683
6707
, (
2018
).
37.
S.
Peng
,
P.
Shevchenko
,
R.
Periwal
, and
R. M.
Reed
, “
Water-oil displacement in shale: New insights from a comparative study integrating imbibition tests and multiscale imaging
,”
SPE J.
26
(
05
),
3285
3299
(
2021
).
38.
M. J.
Blunt
,
B.
Bijeljic
,
H.
Dong
 et al., “
Pore-scale imaging and modelling
,”
Adv. Water Resour.
51
,
197
216
(
2013
).
39.
L.
Chen
,
Q.
Kang
,
Y.
Mu
 et al., “
A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications
,”
Int. J. Heat Mass Transfer
76
,
210
236
(
2014
).
40.
X.
Liu
and
P.
Cheng
, “
Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates
,”
Int. J. Heat Mass Transfer
64
,
1041
1052
(
2013
).
41.
Z.
Li
,
S.
Galindo-Torres
,
G.
Yan
 et al., “
A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties
,”
Adv. Water Resour.
116
,
153
166
(
2018
).
42.
Z.
Li
,
S.
Galindo-Torres
,
G.
Yan
 et al., “
Pore-scale simulations of simultaneous steady-state two-phase flow dynamics using a lattice Boltzmann model: Interfacial area, capillary pressure and relative permeability
,”
Transp. Porous Media
129
(
1
),
295
320
(
2019
).
43.
H.
Liu
,
Z.
Zhu
,
W.
Patrick
 et al., “
Pore-scale numerical simulation of supercritical CO2 migration in porous and fractured media saturated with water
,”
Adv. Geo-Energy Res.
4
(
4
),
419
434
(
2020
).
44.
B.
Wei
,
J.
Hou
,
M. C.
Sukop
 et al., “
Enhancing oil recovery using an immiscible slug: Lattice Boltzmann simulation by three-phase pseudopotential model
,”
Phys. Fluids
32
,
092105
(
2020
).
45.
E.
Ezzatneshan
and
R.
Goharimehr
, “
Study of spontaneous mobility and imbibition of a liquid droplet in contact with fibrous porous media considering wettability effects
,”
Phys. Fluids
32
,
113303
(
2020
).
46.
L.
Ju
,
B.
Shan
,
P.
Liu
 et al., “
Pore-scale study of miscible density-driven mixing flow in porous media
,”
Phys. Fluids
33
,
034113
(
2021
).
47.
T.
Zhang
,
F.
Javadpour
,
X.
Li
 et al., “
Mesoscopic method to study water flow in nanochannels with different wettability
,”
Phys. Rev. E
102
,
013306
(
2020
).
48.
T.
Zhang
,
F.
Javadpour
,
Y.
Yin
 et al., “
Upscaling water flow in composite nanoporous shale matrix using lattice Boltzmann method
,”
Water Resour. Res.
56
,
e2019WR026007
, (
2020
).
49.
A. Q.
Raeini
,
B.
Bijeljic
, and
M. J.
Blunt
, “
Numerical modelling of sub-pore scale events in two-phase flow through porous media
,”
Transp. Porous Media
101
(
2
),
191
213
(
2014
).
50.
M.
Prodanovi
and
S. L.
Bryant
, “
A level set method for determining critical curvatures for drainage and imbibition
,”
J. Colloid Interface Sci.
304
(
2
),
442
458
(
2006
).
51.
G.
Zhu
and
A.
Li
, “
Interfacial dynamics with soluble surfactants: A phase-field two-phase flow model with variable densities
,”
Adv. Geo-Energy Res.
4
(
1
),
86
98
(
2020
).
52.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
(
3
),
511
525
(
1954
).
53.
Y. H.
Qian
,
D.
D'Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier–Stokes equation
,”
Europhys. Lett.
17
(
6
),
479
484
(
1992
).
54.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
(
3
),
1815
1819
(
1993
).
55.
C. D.
Stiles
and
Y.
Xue
, “
High density ratio lattice Boltzmann method simulations of multicomponent multiphase transport of H2O in Air
,”
Comput. Fluids
131
,
81
90
(
2016
).
56.
Q.
Li
,
K. H.
Luo
,
Q. J.
Kang
 et al., “
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
,”
Phys. Rev. E
90
,
053301
(
2014
).
57.
R.
Benzi
,
L.
Biferale
,
M.
Sbragaglia
 et al., “
Mesoscopic two-phase model for describing apparent slip in micro-channel flows
,”
Europhys. Lett.
74
(
4
),
651
657
(
2006
).
58.
J.
Bao
and
L.
Schaefer
, “
Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios
,”
Appl. Math. Model
37
(
4
),
1860
1871
(
2013
).
59.
P.
Yuan
and
L.
Schaefer
, “
Equations of state in a lattice Boltzmann model
,”
Phys. Fluids
18
(
4
),
042101
(
2006
).
60.
D. Y.
Peng
and
D. B.
Robinson
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fundam.
15
(
1
),
59
64
(
1976
).
61.
T.
Ramstad
,
N.
Idowu
,
C.
Nardi
 et al., “
Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks
,”
Transp. Porous Media
94
(
2
),
487
504
(
2012
).
62.
C.
Fang
,
F.
Zhang
, and
R.
Qiao
, “
Invasion of gas into mica nanopores: A molecular dynamics study
,”
J. Phys.
30
(
22
),
224001
(
2018
).
63.
D.
Wildenschild
and
A. P.
Sheppard
, “
X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems
,”
Adv. Water Resour.
51
(
1
),
217
246
(
2013
).
64.
H.
Huang
,
J. J.
Huang
, and
X. Y.
Lu
, “
Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method
,”
Comput. Fluids
93
(
8
),
164
172
(
2014
).
65.
M.
Jung
,
M.
Brinkmann
,
R.
Seemann
 et al., “
wettability controls slow immiscible displacement through local interfacial instabilities
,”
Phys. Rev. Fluids
1
(
7
),
074202
(
2016
).
66.
R.
Hu
,
J.
Wan
,
Z.
Yang
 et al., “
Wettability and flow rate impacts on immiscible displacement: A theoretical model
,”
Geophys. Res. Lett.
45
(
7
),
3077
, (
2018
).
67.
H.
Xiong
,
D.
Devegowda
, and
L.
Huang
, “
Water bridges in clay nanopores: Mechanisms of formation and impact on hydrocarbon transport
,”
Langmuir
36
(
3
),
723
733
(
2020
).
68.
H. J.
Vogel
,
J.
Tölke
,
V. P.
Schulz
 et al., “
Comparison of a lattice‐Boltzmann model, a full‐morphology model, and a pore network model for determining capillary pressure‐saturation relationships
,”
Vadose Zone J.
4
(
2
),
380
388
(
2005
).
You do not currently have access to this content.