We present an experimental study of the rheology and structure of a confined suspension of deformable particles flowing in a quasi-two-dimensional Poiseuille flow. Thanks to a precise microfluidic viscosimetry technique combined with measurements of concentration profiles, our study provides the first experimental confirmation with three-dimensional particles of a strong relationship between structuring effects and rheology, previously only reported in numerical simulations of purely two-dimensional systems. In conditions where strong structuring effects take place due to confinement, the evolution of the effective viscosity with particle concentration (here, red blood cells) shows a remarkable succession of ranges of rapid growth and plateaus that are associated with qualitative transitions in the structure of the suspension.

1.
R.
Fåhræus
and
T.
Lindqvist
, “
The viscosity of the blood in narrow capillary tubes
,”
Am. J. Physiol.
96
,
562
568
(
1931
).
2.
R. G.
Horn
and
J. N.
Israelachvili
, “
Direct measurement of structural forces between two surfaces in a nonpolar liquid
,”
J. Chem. Phys.
75
(
3
),
1400
1411
(
1981
).
3.
L.
Bureau
, “
Nonlinear rheology of a nanoconfined simple fluid
,”
Phys. Rev. Lett.
104
,
218302
(
2010
).
4.
A.
Maali
,
T.
Cohen-Bouhacina
,
G.
Couturier
, and
J.-P.
Aimé
, “
Oscillatory dissipation of a simple confined liquid
,”
Phys. Rev. Lett.
96
,
086105
(
2006
).
5.
X.
Xu
,
S.
Rice
, and
A.
Dinner
, “
Relation between ordering and shear thinning
,”
Proc. Natl. Acad. Sci.
110
,
3771
3776
(
2013
).
6.
A. A.
Aerov
and
M.
Krüger
, “
Theory of rheology in confinement
,”
Phys. Rev. E
92
,
042301
(
2015
).
7.
W.
Fornari
,
L.
Brandt
,
P.
Chaudhuri
,
C. U.
Lopez
,
D.
Mitra
, and
F.
Picano
, “
Rheology of confined non-Brownian suspensions
,”
Phys. Rev. Lett.
116
,
018301
(
2016
).
8.
K.
Yeo
and
M. R.
Maxey
, “
Ordering transition of non-Brownian suspensions in confined steady shear flow
,”
Phys. Rev. E
81
,
051502
(
2010
).
9.
F.
Blanc
,
E.
Lemaire
,
A.
Meunier
, and
F.
Peters
, “
Microstructure in sheared non-Brownian concentrated suspensions
,”
J. Rheol.
57
(
1
),
273
292
(
2013
).
10.
S.
Deboeuf
,
N.
Lenoir
,
D.
Hautemayou
,
M.
Bornert
,
F.
Blanc
, and
G.
Ovarlez
, “
Imaging non-Brownian particle suspensions with x-ray tomography: Application to the microstructure of Newtonian and viscoplastic suspensions
,”
J. Rheol.
62
(
2
),
643
663
(
2018
).
11.
M.
Loewenberg
and
E. J.
Hinch
, “
Collision of two deformable drops in shear flow
,”
J. Fluid Mech.
338
,
299
(
1997
).
12.
R. K.
Singh
and
K.
Sarkar
, “
Effects of viscosity ratio and three dimensional positioning on hydrodynamic interactions between two viscous drops in a shear flow at finite inertia
,”
Phys. Fluids
21
,
103303
(
2009
).
13.
E.
Lac
and
D.
Barthès-Biesel
, “
Pairwise interaction of capsules in simple shear flow: Three-dimensional effects
,”
Phys. Fluids
20
,
040801
(
2008
).
14.
P.
Pranay
,
S. G.
Anekal
,
J. P.
Hernandez-Ortiz
, and
M. D.
Graham
, “
Pair collisions of fluid-filled elastic capsules in shear flow: Effects of membrane properties and polymer additives
,”
Phys. Fluids
22
,
123103
(
2010
).
15.
P.-Y.
Gires
,
A.
Srivastav
,
C.
Misbah
,
T.
Podgorski
, and
G.
Coupier
, “
Pairwise hydrodynamic interactions and diffusion in a vesicle suspension
,”
Phys. Fluids
26
,
013304
(
2014
).
16.
M.
Thiébaud
,
Z.
Shen
,
J.
Harting
, and
C.
Misbah
, “
Prediction of anomalous blood viscosity in confined shear flow
,”
Phys. Rev. Lett.
112
,
238304
(
2014
).
17.
Z.
Shen
,
A.
Farutin
,
M.
Thiébaud
, and
C.
Misbah
, “
Interaction and rheology of vesicle suspensions in confined shear flow
,”
Phys. Rev. Fluids
2
,
103101
(
2017
).
18.
A.
Nait-Ouhra
,
A.
Farutin
,
H.
Ez-Zahraouy
,
A.
Benyoussef
, and
C.
Misbah
, “
Rheology of a confined vesicle suspension
,”
Phys. Rev. Fluids
4
,
103602
(
2019
).
19.
H.
Feng
,
H.
Huang
, and
X.-Y.
Lu
, “
Rheology of capsule suspensions in plane Poiseuille flows
,”
Phys. Fluids
33
(
1
),
013302
(
2021
).
20.
G. R.
Lázaro
,
A.
Hernández-Machado
, and
I.
Pagonabarraga
, “
Collective behavior of red blood cells in confined channels
,”
Eur. Phys. J. E
42
,
46
(
2019
).
21.
D. A.
Fedosov
,
H.
Noguchi
, and
G.
Gompper
, “
Multiscale modeling of blood flow: From single cells to blood rheology
,”
Biomech. Model. Mechanobiol.
13
,
239
258
(
2014
).
22.
S.
Roman
,
S.
Lorthois
,
P.
Duru
, and
F.
Risso
, “
Velocimetry of red blood cells in microvessels by the dual-slit method: Effect of velocity gradients
,”
Microvasc. Res.
84
,
249
(
2012
).
23.
S.
Roman
,
A.
Merlo
,
P.
Duru
,
F.
Risso
, and
S.
Lorthois
, “
Going beyond 20 μm-sized channels for studying red blood cell phase separation in microfluidic bifurcations
,”
Biomicrofluidics
10
,
034103
(
2016
).
24.
Z.
Shen
,
G.
Coupier
,
B.
Kaoui
,
B.
Polack
,
J.
Harting
,
C.
Misbah
, and
T.
Podgorski
, “
Inversion of hematocrit partition at microfluidic bifurcations
,”
Microvasc. Res.
105
,
40
46
(
2016
).
25.
S.
Losserand
,
G.
Coupier
, and
T.
Podgorski
, “
Migration velocity of red blood cells in microchannels
,”
Microvasc. Res.
124
,
30
(
2019
).
26.
C.
Minetti
,
V.
Audemar
,
T.
Podgorski
, and
G.
Coupier
, “
Dynamics of a large population of red blood cells under shear flow
,”
J. Fluid Mech.
864
,
408
(
2019
).
27.
A.
Merlo
,
M.
Berg
,
P.
Duru
,
F.
Risso
,
Y.
Davit
, and
S.
Lorthois
, “
A few upstream bifurcations drive the spatial distribution of red blood cells in model microfluidic networks
,”
Soft Matter
18
,
1463
1478
(
2022
).
28.
B.
Neu
and
H. J.
Meiselman
, “
Depletion-mediated red blood cell aggregation in polymer solutions
,”
Biophys. J.
83
(
5
),
2482
2490
(
2002
).
29.
S. J.
Baik
,
P.
Moldenaers
, and
C.
Clasen
, “
A sliding plate microgap rheometer for the simultaneous measurement of shear stress and first normal stress difference
,”
Rev. Sci. Instrum.
82
(
3
),
035121
(
2011
).
30.
B. D.
Jofore
,
P.
Erni
,
G.
Vleminckx
,
P.
Moldenaers
, and
C.
Clasen
, “
Rheology of microgels in single particle confinement
,”
Rheol. Acta
54
,
581
600
(
2015
).
31.
P. C.
Galambos
and
F. K.
Forster
, “
An optical micro-fluidic viscometer
,” in
Micro-Electro-Mechanical Systems
(
ASME
,
1998
).
32.
P.
Guillot
,
P.
Panizza
,
J.-B.
Salmon
,
M.
Joanicot
,
A.
Colin
,
C.-H.
Bruneau
, and
T.
Colin
, “
Viscosimeter on a microfluidic chip
,”
Langmuir
22
(
14
),
6438
6445
(
2006
).
33.
D. E.
Solomon
and
S. A.
Vanapalli
, “
Multiplexed microfluidic viscometer for high-throughput complex fluid rheology
,”
Microfluid. Nanofluid.
16
,
677
690
(
2014
).
34.
D. E.
Solomon
,
A.
Abdel-Raziq
, and
S. A.
Vanapalli
, “
A stress-controlled microfluidic shear viscometer based on smartphone imaging
,”
Rheol. Acta
55
,
727
738
(
2016
).
35.
J.
Gachelin
,
G.
Miño
,
H.
Berthet
,
A.
Lindner
,
A.
Rousselet
, and
E.
Clément
, “
Non-Newtonian viscosity of Escherichia coli suspensions
,”
Phys. Rev. Lett.
110
,
268103
(
2013
).
36.
Y. J.
Kang
, “
Continuous and simultaneous measurement of the biophysical properties of blood in a microfluidic environment
,”
Analyst
141
,
6583
6597
(
2016
).
37.
S.
Kim
,
K. C.
Kim
, and
E.
Yeom
, “
Microfluidic method for measuring viscosity using images from smartphone
,”
Opt. Laser Eng.
104
,
237
243
(
2018
).
38.
T.
Gervais
,
J.
El-Ali
,
A.
Günther
, and
K. V.
Jensen
, “
Flow-induced deformation of shallow microfluidic channels
,”
Lab Chip
6
,
500
507
(
2006
).
39.
X.
Grandchamp
,
G.
Coupier
,
A.
Srivastav
,
C.
Minetti
, and
T.
Podgorski
, “
Lift and down-gradient shear-induced diffusion in red blood cell suspensions
,”
Phys. Rev. Lett.
110
,
108101
(
2013
).
40.
Q.
Zhou
,
J.
Fidalgo
,
L.
Calvi
,
M. O.
Bernabeu
,
P. R.
Hoskins
,
M. S. N.
Oliveira
, and
T.
Krüger
, “
Spatiotemporal dynamics of dilute red blood cell suspensions in low-inertia microchannel flow
,”
Biophys. J.
118
(
10
),
2561
2573
(
2020
).
41.
S.
Losserand
, “
Dispersion et temps de transit de globules rouges dans les capillaires et réseaux microcirculatoires
,” Ph.D. thesis (
Université Grenoble Alpes
,
2020
).
42.
J. R.
Lake
,
K. C.
Heyde
, and
W. C.
Ruder
, “
Low-cost feedback-controlled syringe pressure pumps for microfluidics applications
,”
PLoS One
12
(
4
),
e0175089
(
2017
).
43.
A. R.
Pries
,
D.
Neuhaus
, and
P.
Gaehtgens
, “
Blood viscosity in tube flow: Dependence on diameter and hematocrit
,”
Am. J. Physiol.
263
,
H1770
H1778
(
1992
).
44.
A. R.
Pries
,
G.
Kanzow
, and
P.
Gaehtgens
, “
Microphotometric determination of hematocrit in small vessels
,”
Am. J. Physiol.-Heart Circ. Physiol.
245
(
1
),
H167
H177
(
1983
).
45.
A.
Mantegazza
,
F.
Clavica
, and
D.
Obrist
, “
In vitro investigations of red blood cell phase separation in a complex microchannel network
,”
Biomicrofluidics
14
,
014101
(
2020
).
46.
C. E.
McLaren
,
G. M.
Brittenham
, and
V.
Hasselblad
, “
Statistical and graphical evaluation of erythrocyte volume distributions
,”
Am. J. Physiol.-Heart Circ. Physiol.
252
(
4
),
H857
H866
(
1987
).
47.
C.
Iss
,
D.
Midou
,
A.
Moreau
,
D.
Held
,
A.
Charrier
,
S.
Mendez
,
A.
Viallat
, and
E.
Helfer
, “
Self-organization of red blood cell suspensions under confined 2D flows
,”
Soft Matter
15
,
2971
2980
(
2019
).
48.
R.
Fahraeus
, “
The suspension stability of the blood
,”
Physiol. Rev.
9
,
241
274
(
1929
).
49.
H.
Chaplin
, Jr.
and
P. L.
Mollison
, “
Correction for plasma trapped in the red cell column of the hematocrit
,”
Blood
7
(
12
),
1227
1238
(
1952
).
50.
O.
Linderkamp
and
H. J.
Meiselman
, “
Geometric, osmotic, and membrane mechanical properties of density-separated human red cells
,”
Blood
59
,
1121
1127
(
1982
).
51.
V.
Vitkova
,
M.-A.
Mader
,
B.
Polack
,
C.
Misbah
, and
T.
Podgorski
, “
Micro-macro link in rheology of erythrocyte and vesicle suspensions
,”
Biophys. J.
95
,
33
35
(
2008
).
52.
T. M.
Fischer
and
R.
Korzeniewski
, “
Threshold shear stress for the transition between tumbling and tank-treading of red blood cells in shear flow: Dependence on the viscosity of the suspending medium
,”
J. Fluid Mech
736
,
351
(
2013
).
53.
B.
Hogan
, “
Numerical study of blood microcirculation and its interactions with the endothelium
,” Ph.D. thesis (
Université Paris-Saclay
,
2019
).
54.
D.
Tsvirkun
,
A.
Grichine
,
A.
Duperray
,
C.
Misbah
, and
L.
Bureau
, “
Microvasculature on a chip: Study of the endothelial surface layer and the flow structure of red blood cells
,”
Sci. Rep.
7
,
45036
(
2017
).
You do not currently have access to this content.