Coalescence of argon droplets with a radius of 25, 50, and 100 nm is studied with computational methods. Molecular dynamics (MD) simulations are carried out to generate reference data. Moreover, a phase-field model resting on a Helmholtz energy equation of state is devised and evaluated by computational fluid dynamics (CFD) simulations. Exactly the same scenarios in terms of geometry, fluid, and state are considered with these approaches. The MD and CFD simulation results show an excellent agreement over the entire coalescence process, including the decay of the inertia-induced oscillation of the merged droplet. Theoretical knowledge about the asymptotic behavior of coalescence process regimes is confirmed. All considered scenarios cross from the inertially limited viscous regime over to the inertial regime because of the low shear viscosity of argon. The particularly rapid dynamics during the initial stages of the coalescence process in the thermal regime is also captured by the phase-field model, where a closer look at the liquid density reveals that metastable states associated with negative pressure are attained in the emerging liquid bridge between the coalescing droplets. This demonstrates that this model is even capable of adequately handling the onset of coalescence. To speed up CFD simulations, the phase-field model is transferred to coarser grids through an interface widening approach that retains the thermodynamic properties including the surface tension.

1.
F. B.
Wadsworth
,
J.
Vasseur
,
E. W.
Llewellin
,
J.
Schauroth
,
K. J.
Dobson
,
B.
Scheu
, and
D. B.
Dingwell
, “
Sintering of viscous droplets under surface tension
,”
Proc. R. Soc. A
472
,
20150780
(
2016
).
2.
J.
Breitenbach
,
I. V.
Roisman
, and
C.
Tropea
, “
From drop impact physics to spray cooling models: A critical review
,”
Exp. Fluids
59
,
55
(
2018
).
3.
J.
Jin
,
C.
Ooi
,
D.
Dao
, and
N.-T.
Nguyen
, “
Coalescence processes of droplets and liquid marbles
,”
Micromachines
8
,
336
(
2017
).
4.
R. W.
Hopper
, “
Plane Stokes flow driven by capillarity on a free surface
,”
J. Fluid Mech.
213
,
349
375
(
1990
).
5.
J.
Eggers
,
J. R.
Lister
, and
H. A.
Stone
, “
Coalescence of liquid drops
,”
J. Fluid Mech.
401
,
293
310
(
1999
).
6.
Y. D.
Shikhmurzaev
, “
Coalescence and capillary breakup of liquid volumes
,”
Phys. Fluids
12
,
2386
2396
(
2000
).
7.
A. B.
Thompson
and
J.
Billingham
, “
Inviscid coalescence in the presence of a surrounding fluid
,”
IMA J. Appl. Math.
77
,
678
696
(
2012
).
8.
H. J.
Maris
, “
Analysis of the early stage of coalescence of helium drops
,”
Phys. Rev. E
67
,
066309
(
2003
).
9.
L.
Duchemin
,
J.
Eggers
, and
C.
Josserand
, “
Inviscid coalescence of drops
,”
J. Fluid Mech.
487
,
167
178
(
2003
).
10.
T. G.
Owe Berg
,
G. C.
Fernish
, and
T. A.
Gaukler
, “
The mechanism of coalescence of liquid drops
,”
J. Atmos. Sci.
20
,
153
158
(
1963
).
11.
T. M.
Dreher
,
J.
Glass
,
A. J.
O'Connor
, and
G. W.
Stevens
, “
Effect of rheology on coalescence rates and emulsion stability
,”
AIChE J.
45
,
1182
1190
(
1999
).
12.
R.
Ishiguro
,
F.
Graner
,
E.
Rolley
, and
S.
Balibar
, “
Coalescence of crystalline drops
,”
Phys. Rev. Lett.
93
,
235301
(
2004
).
13.
M.
Wu
,
T.
Cubaud
, and
C.-M.
Ho
, “
Scaling law in liquid drop coalescence driven by surface tension
,”
Phys. Fluids
16
,
L51
L54
(
2004
).
14.
D. G. A. L.
Aarts
,
H. N. W.
Lekkerkerker
,
H.
Guo
,
G. H.
Wegdam
, and
D.
Bonn
, “
Hydrodynamics of droplet coalescence
,”
Phys. Rev. Lett.
95
,
164503
(
2005
).
15.
S. T.
Thoroddsen
,
K.
Takehara
, and
T. G.
Etoh
, “
The coalescence speed of a pendent and a sessile drop
,”
J. Fluid Mech.
527
,
85
114
(
2005
).
16.
K.
Fezzaa
and
Y.
Wang
, “
Ultrafast x-ray phase-contrast imaging of the initial coalescence phase of two water droplets
,”
Phys. Rev. Lett.
100
,
104501
(
2008
).
17.
S. C.
Case
, “
Coalescence of low-viscosity fluids in air
,”
Phys. Rev. E
79
,
026307
(
2009
).
18.
S. T.
Thoroddsen
,
B.
Qian
,
T. G.
Etoh
, and
K.
Takehara
, “
The initial coalescence of miscible drops
,”
Phys. Fluids
19
,
072110
(
2007
).
19.
J. D.
Paulsen
,
J. C.
Burton
, and
S. R.
Nagel
, “
Viscous to inertial crossover in liquid drop coalescence
,”
Phys. Rev. Lett.
106
,
114501
(
2011
).
20.
M. M.
Rahman
,
W.
Lee
,
A.
Iyer
, and
S. J.
Williams
, “
Viscous resistance in drop coalescence
,”
Phys. Fluids
31
,
012104
(
2019
).
21.
A.
Menchaca-Rocha
,
A.
Martínez-Dávalos
,
R.
Núñez
,
S.
Popinet
, and
S.
Zaleski
, “
Coalescence of liquid drops by surface tension
,”
Phys. Rev. E
63
,
046309
(
2001
).
22.
J. D.
Paulsen
,
J. C.
Burton
,
S. R.
Nagel
,
S.
Appathurai
,
M. T.
Harris
, and
O. A.
Basaran
, “
The inexorable resistance of inertia determines the initial regime of drop coalescence
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
6857
6861
(
2012
).
23.
J. D.
Paulsen
, “
Approach and coalescence of liquid drops in air
,”
Phys. Rev. E
88
,
063010
(
2013
).
24.
Y.
Chen
,
C.
Shen
, and
G. P.
Peterson
, “
Hydrodynamics and morphologies of droplet coalescence
,”
Ind. Eng. Chem. Res.
54
,
9257
9262
(
2015
).
25.
C.
Shen
,
Y.
Chen
,
C.
Yu
, and
X.
Liu
, “
Numerical study on the liquid-liquid interface evolution during droplet coalescence
,”
Microgravity Sci. Technol.
32
,
737
748
(
2020
).
26.
P.
Zimmermann
,
A.
Mawbey
, and
T.
Zeiner
, “
Calculation of droplet coalescence in binary liquid–liquid systems: An incompressible Cahn–Hilliard/Navier–Stokes approach using the non-random two-liquid model
,”
J. Chem. Eng. Data
65
,
1083
1094
(
2020
).
27.
L.
Baroudi
,
M.
Kawaji
, and
T.
Lee
, “
Effects of initial conditions on the simulation of inertial coalescence of two drops
,”
Comput. Math. Appl.
67
,
282
289
(
2014
).
28.
S. J.
Lim
,
M. C.
Choi
,
B. M.
Weon
, and
B.
Gim
, “
Lattice Boltzmann simulations for water coalescence
,”
Appl. Phys. Lett.
111
,
101602
(
2017
).
29.
M.
Gross
,
I.
Steinbach
,
D.
Raabe
, and
F.
Varnik
, “
Viscous coalescence of droplets: A lattice Boltzmann study
,”
Phys. Fluids
25
,
052101
(
2013
).
30.
J. E.
Sprittles
and
Y. D.
Shikhmurzaev
, “
Coalescence of liquid drops: Different models versus experiment
,”
Phys. Fluids
24
,
122105
(
2012
).
31.
R. T.
Eiswirth
,
H.-J.
Bart
,
A. A.
Ganguli
, and
E. Y.
Kenig
, “
Experimental and numerical investigation of binary coalescence: Liquid bridge building and internal flow fields
,”
Phys. Fluids
24
,
062108
(
2012
).
32.
J.-C.
Pothier
and
L. J.
Lewis
, “
Molecular-dynamics study of the viscous to inertial crossover in nanodroplet coalescence
,”
Phys. Rev. B
85
,
115447
(
2012
).
33.
H.
Deka
,
G.
Biswas
,
S.
Chakraborty
, and
A.
Dalal
, “
Coalescence dynamics of unequal sized drops
,”
Phys. Fluids
31
,
012105
(
2019
).
34.
R.
Stierle
and
J.
Gross
, “
Hydrodynamic density functional theory for mixtures from a variational principle and its application to droplet coalescence
,”
J. Chem. Phys.
155
,
134101
(
2021
).
35.
A. H.
Rajkotwala
,
H.
Mirsandi
,
E. A. J. F.
Peters
,
M. W.
Baltussen
,
C. W. M.
van der Geld
,
J. G. M.
Kuerten
, and
J. A. M.
Kuipers
, “
Extension of local front reconstruction method with controlled coalescence model
,”
Phys. Fluids
30
,
022102
(
2018
).
36.
J.-Y.
Chen
,
P.
Gao
,
Y.-T.
Xia
,
E.-Q.
Li
,
H.-R.
Liu
, and
H.
Ding
, “
Early stage of delayed coalescence of soluble paired droplets: A numerical study
,”
Phys. Fluids
33
,
092005
(
2021
).
37.
V.
Cristini
and
Y.-C.
Tan
, “
Theory and numerical simulation of droplet dynamics in complex flows—A review
,”
Lab Chip
4
,
257
264
(
2004
).
38.
J.
Kamp
,
J.
Villwock
, and
M.
Kraume
, “
Drop coalescence in technical liquid/liquid applications: A review on experimental techniques and modeling approaches
,”
Rev. Chem. Eng.
33
,
1
47
(
2017
).
39.
S.
Perumanath
,
M. K.
Borg
,
M. V.
Chubynsky
,
J. E.
Sprittles
, and
J. M.
Reese
, “
Droplet coalescence is initiated by thermal motion
,”
Phys. Rev. Lett.
122
,
104501
(
2019
).
40.
J.
Koplik
,
S.
Pal
, and
J. R.
Banavar
, “
Dynamics of nanoscale droplets
,”
Phys. Rev. E
65
,
021504
(
2002
).
41.
L.
Zhao
and
P.
Choi
, “
Molecular dynamics simulation of the coalescence of nanometer-sized water droplets in n-heptane
,”
J. Chem. Phys.
120
,
1935
1942
(
2004
).
42.
B.-B.
Wang
,
X.-D.
Wang
,
W.-M.
Yan
, and
T.-H.
Wang
, “
Molecular dynamics simulations on coalescence and non-coalescence of conducting droplets
,”
Langmuir
31
,
7457
7462
(
2015
).
43.
T.
Li
,
Y.
Xia
,
L.
Zhang
,
X.
Zhang
,
C.
Fu
,
Y.
Jiang
, and
H.
Li
, “
Effects of stripy surfaces with intervals on the coalescence dynamics of nano-droplets: Insights from molecular dynamics simulations
,”
Appl. Surf. Sci.
481
,
951
959
(
2019
).
44.
S.
Grottel
,
M.
Krone
,
C.
Muller
,
G.
Reina
, and
T.
Ertl
, “
MegaMol—A prototyping framework for particle-based visualization
,”
IEEE Trans. Visualization Comput. Graph.
21
,
201
214
(
2015
).
45.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
Europhys. Lett.
19
,
155
160
(
1992
).
46.
V.
Akella
and
H.
Gidituri
, “
Universal scaling laws in droplet coalescence: A dissipative particle dynamics study
,”
Chem. Phys. Lett.
758
,
137917
(
2020
).
47.
N.
Moelans
,
B.
Blanpain
, and
P.
Wollants
, “
An introduction to phase-field modeling of microstructure evolution
,”
CALPHAD
32
,
268
294
(
2008
).
48.
D. M.
Anderson
,
G. B.
McFadden
, and
A. A.
Wheeler
, “
Diffuse-interface methods in fluid mechanics
,”
Annu. Rev. Fluid Mech.
30
,
139
165
(
1998
).
49.
V. E.
Badalassi
,
H. D.
Ceniceros
, and
S.
Banerjee
, “
Computation of multiphase systems with phase field models
,”
J. Comput. Phys.
190
,
371
397
(
2003
).
50.
D.
Jacqmin
, “
Calculation of two-phase Navier–Stokes flows using phase-field modeling
,”
J. Comput. Phys.
155
,
96
127
(
1999
).
51.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
,
258
267
(
1958
).
52.
J.
Gross
and
G.
Sadowski
, “
Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules
,”
Ind. Eng. Chem. Res.
40
,
1244
1260
(
2001
).
53.
M.
Heier
,
S.
Stephan
,
J.
Liu
,
W. G.
Chapman
,
H.
Hasse
, and
K.
Langenbach
, “
Equation of state for the Lennard-Jones truncated and shifted fluid with a cut-off radius of 2.5σ based on perturbation theory and its applications to interfacial thermodynamics
,”
Mol. Phys.
116
,
2083
2094
(
2018
).
54.
K.
Langenbach
, “
Co-oriented fluid functional equation for electrostatic interactions (COFFEE)
,”
Chem. Eng. Sci.
174
,
40
55
(
2017
).
55.
H.
Kahl
and
S.
Enders
, “
Calculation of surface properties of pure fluids using density gradient theory and SAFT-EOS
,”
Fluid Phase Equilib.
172
,
27
42
(
2000
).
56.
C.
Miqueu
,
B.
Mendiboure
,
A.
Graciaa
, and
J.
Lachaise
, “
Modelling of the surface tension of pure components with the gradient theory of fluid interfaces: A simple and accurate expression for the influence parameters
,”
Fluid Phase Equilib.
207
,
225
246
(
2003
).
57.
P.
Rehner
and
J.
Gross
, “
Predictive density gradient theory based on nonlocal density functional theory
,”
Phys. Rev. E
98
,
063312
(
2018
).
58.
F.
Diewald
,
M.
Heier
,
M.
Horsch
,
C.
Kuhn
,
K.
Langenbach
,
H.
Hasse
, and
R.
Müller
, “
Three-dimensional phase field modeling of inhomogeneous gas-liquid systems using the PeTS equation of state
,”
J. Chem. Phys.
149
,
064701
(
2018
).
59.
S.
Stephan
,
K.
Langenbach
, and
H.
Hasse
, “
Interfacial properties of binary lennard-jones mixtures by molecular simulation and density gradient theory
,”
J. Chem. Phys.
150
,
174704
(
2019
).
60.
F.
Diewald
,
M. P.
Lautenschlaeger
,
S.
Stephan
,
K.
Langenbach
,
C.
Kuhn
,
S.
Seckler
,
H.-J.
Bungartz
,
H.
Hasse
, and
R.
Müller
, “
Molecular dynamics and phase field simulations of droplets on surfaces with wettability gradient
,”
Comput. Methods Appl. Mech. Eng.
361
,
112773
(
2020
).
61.
M. P.
Lautenschlaeger
and
H.
Hasse
, “
Transport properties of the Lennard-Jones truncated and shifted fluid from non-equilibrium molecular dynamics simulations
,”
Fluid Phase Equilib.
482
,
38
47
(
2019
).
62.
J.
Vrabec
,
G. K.
Kedia
,
G.
Fuchs
, and
H.
Hasse
, “
Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties
,”
Mol. Phys.
104
,
1509
1527
(
2006
).
63.
C.
Niethammer
,
S.
Becker
,
M.
Bernreuther
,
M.
Buchholz
,
W.
Eckhardt
,
A.
Heinecke
,
S.
Werth
,
H.-J.
Bungartz
,
C. W.
Glass
,
H.
Hasse
,
J.
Vrabec
, and
M.
Horsch
, “
ls1 mardyn: The massively parallel molecular dynamics code for large systems
,”
J. Chem. Theory Comput.
10
,
4455
4464
(
2014
).
64.
N.
Tchipev
,
S.
Seckler
,
M.
Heinen
,
J.
Vrabec
,
F.
Gratl
,
M.
Horsch
,
M.
Bernreuther
,
C. W.
Glass
,
C.
Niethammer
,
N.
Hammer
,
B.
Krischok
,
M.
Resch
,
D.
Kranzlmüller
,
H.
Hasse
,
H.-J.
Bungartz
, and
P.
Neumann
, “
TweTriS: Twenty trillion-atom simulation
,”
Int. J. High Perform. Comput. Appl.
33
,
838
854
(
2019
).
65.
F.
Diewald
, “
Phase field modeling of static and dynamic wetting
,”
Forschungsbericht/Technische Universität Kaiserslautern
(
Lehrstuhl Technische Mechanik
,
2020
), Vol.
19
.
66.
M.
Heinen
and
J.
Vrabec
,
Coalescence of Two Nanoscopic Argon Droplets by Molecular Dynamics Simulation
(
University of Stuttgart
,
2022
).
67.
M.
Hoffmann
,
F.
Diewald
, and
K
Langenbach
,
Coalescence of Two Nanoscopic Argon Droplets by Phase-Field Modeling
(
University of Stuttgart
,
2022
).
You do not currently have access to this content.