Experiments have shown that external mechanical loading plays an important role in bone development and remodeling. In fact, recent research has provided evidence that osteocytes can sense such loading and respond by releasing biochemical signals (mechanotransduction, MT) that initiate bone degradation or growth. Many aspects on MT remain unclear, especially at the cellular level. Because of the extreme hardness of the bone matrix and complexity of the microenvironment that an osteocyte lives in, in vivo studies are difficult; in contrast, modeling and simulation are viable approaches. Although many computational studies have been carried out, the complex geometry that can involve 60+ irregular canaliculi is often simplified to a select few straight tubes or channels. In addition, the pericellular matrix (PCM) is usually not considered. To better understand the effects of these frequently neglected aspects, we use the lattice Boltzmann equations to model the fluid flow over an osteocyte in a lacuno-canalicular network in two dimensions. We focus on the influences of the number/geometry of the canaliculi and the effects of the PCM on the fluid wall shear stress (WSS) and normal stress (WNS) on an osteocyte surface. We consider 16, 32, and 64 canaliculi using one randomly generated geometry for each of the 16 and 32 canaliculi cases and three geometries for the 64 canaliculi case. We also consider 0%, 5%, 10%, 20%, and 40% pericellular matrix density. Numerical results on the WSS and WNS distributions and on the velocity field are visualized, compared, and analyzed. Our major results are as follows: (1) the fluid flow generates significantly greater force on the surface of the osteocyte if the model includes the pericellular matrix (PCM); (2) in the absence of PCM, the average magnitudes of the stresses on the osteocyte surface are not significantly altered by the number and geometry of the canaliculi despite some quantitative influence of the latter on overall variation and distribution of those stresses; and (3) the dimensionless stress (stress after non-dimensionalization) on the osteocyte surface scales approximately as the reciprocal of the Reynolds number and increasing PCM density in the canaliculi reduces the range of Reynolds number values for which the scaling law holds.

1.
J.
Klein-Nulend
,
R.
Bacabac
, and
A.
Bakker
, “
Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton
,”
Eur. Cell Mater.
24
,
278
291
(
2012
).
2.
M. L. K.
Tate
,
J. R.
Adamson
,
A. E.
Tami
, and
T. W.
Bauer
, “
The osteocyte
,”
Int. J. Biochem. Cell Biol.
36
(
1
),
1
8
(
2004
).
3.
D. P.
Nicolella
,
D. E.
Moravits
,
A. M.
Gale
,
L. F.
Bonewald
, and
J.
Lankford
, “
Osteocyte lacunae tissue strain in cortical bone
,”
J. Biomech.
39
(
9
),
1735
1743
(
2006
).
4.
C. R.
Jacobs
,
S.
Temiyasathit
, and
A. B.
Castillo
, “
Osteocyte mechanobiology and pericellular mechanics.
,”
Annu. Rev. Biomed. Eng.
12
,
369
400
(
2010
).
5.
T.
Adachi
,
Y.
Kameo
, and
M.
Hojo
, “
Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress
,”
Philos. Trans. R. Soc. A
368
(
1920
),
2669
2682
(
2010
).
6.
S.
Weinbaum
,
Y.
Duan
,
M. M.
Thi
, and
L.
You
, “
An integrative review of mechanotransduction in endothelial, epithelial (renal) and dendritic cells (osteocytes)
,”
Cel. Mol. Bioeng.
4
(
4
),
510
537
(
2011
).
7.
A.
Spyropoulou
,
K.
Karamesinis
, and
E. K.
Basdra
, “
Mechanotransduction pathways in bone pathobiology
,”
Biochim. Biophys. Acta
1852
(
9
),
1700
1708
(
2015
).
8.
L.
Qin
,
W.
Liu
,
H.
Cao
, and
G.
Xiao
, “
Molecular mechanosensors in osteocytes
,”
Bone Res.
8
(
1
),
1
24
(
2020
).
9.
K. K.
Papachroni
,
D. N.
Karatzas
,
K. A.
Papavassiliou
,
E. K.
Basdra
, and
A. G.
Papavassiliou
, “
Mechanotransduction in osteoblast regulation and bone disease.
,”
Trends Mol. Med.
15
(
5
),
208
216
(
2009
).
10.
L.
You
,
S. C.
Cowin
,
M. B.
Schaffler
, and
S.
Weinbaum
, “
A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix
,”
J. Biomech.
34
(
11
),
1375
1386
(
2001
).
11.
N.
Rosa
,
R.
Simoes
,
F. D.
Magalhães
, and
A. T.
Marques
, “
From mechanical stimulus to bone formation: A review
,”
Med. Eng. Phys.
37
(
8
),
719
728
(
2015
).
12.
A. L.
Rath
,
L. F.
Bonewald
,
J.
Ling
,
J. X.
Jiang
,
M. E.
Van Dyke
, and
D. P.
Nicolella
, “
Correlation of cell strain in single osteocytes with intracellular calcium, but not intracellular nitric oxide, in response to fluid flow
,”
J. Biomech.
43
(
8
),
1560
1564
(
2010
).
13.
A. R.
Gortazar
,
M.
Martin-Millan
,
B.
Bravo
,
L. I.
Plotkin
, and
T.
Bellido
, “
Crosstalk between caveolin-1/extracellular signal-regulated kinase (ERK) and β-catenin survival pathways in osteocyte mechanotransduction
,”
J. Biol. Chem.
288
(
12
),
8168
8175
(
2013
).
14.
J. I.
Aguirre
,
L. I.
Plotkin
,
A. R.
Gortazar
,
M. M.
Millan
,
C. A.
O'Brien
,
S. C.
Manolagas
, and
T.
Bellido
, “
A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction
,”
J. Biol. Chem.
282
(
35
),
25501
25508
(
2007
).
15.
S.
Mellon
and
K.
Tanner
, “
Bone and its adaptation to mechanical loading: A review
,”
Int. Mater. Rev.
57
(
5
),
235
255
(
2012
).
16.
S.
Temiyasathit
and
C. R.
Jacobs
, “
Osteocyte primary cilium and its role in bone mechanotransduction
,”
Ann. New York Acad. Sci.
1192
(
1
),
422
428
(
2010
).
17.
H.
Isaksson
, “
Recent advances in mechanobiological modeling of bone regeneration.
,”
Mech. Res. Commun.
42
,
22
31
(
2012
).
18.
Y.
Han
,
S. C.
Cowin
,
M. B.
Schaffler
, and
S.
Weinbaum
, “
Mechanotransduction and strain amplification in osteocyte cell processes
,”
Proc. Natl. Acad. Sci. U. S. A.
101
(
47
),
16689
16694
(
2004
).
19.
S.
Burra
,
D. P.
Nicolella
,
W. L.
Francis
,
C. J.
Freitas
,
N. J.
Mueschke
,
K.
Poole
, and
J. X.
Jiang
, “
Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
31
),
13648
13653
(
2010
).
20.
D.
Wu
,
M. B.
Schaffler
,
S.
Weinbaum
, and
D. C.
Spray
, “
Matrix-dependent adhesion mediates network responses to physiological stimulation of the osteocyte cell process
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
29
),
12096
12101
(
2013
).
21.
M. M.
Thi
,
S. O.
Suadicani
,
M. B.
Schaffler
,
S.
Weinbaum
, and
D. C.
Spray
, “
Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
52
),
21012
21017
(
2013
).
22.
A. G.
Robling
and
L. F.
Bonewald
, “
The osteocyte: New insights.
,”
Annu. Rev. Physiol.
82
,
485
506
(
2020
).
23.
J.
Klein-Nulend
,
A.
Van der Plas
,
C.
Semeins
,
N.
Ajubi
,
J.
Frangos
,
P.
Nijweide
, and
E.
Burger
, “
Sensitivity of osteocytes to biomechanical stress in vitro
,”
FASEB J.
9
(
5
),
441
445
(
1995
).
24.
J.
Kleinnulend
,
C.
Semeins
,
N.
Ajubi
,
P.
Nijweide
, and
E.
Burger
, “
Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts-correlation with prostaglandin upregulation.
,”
Biochem. Biophys. Res. Commun.
217
(
2
),
640
648
(
1995
).
25.
J. G.
McGarry
,
J.
Klein-Nulend
,
M. G.
Mullender
, and
P. J.
Prendergast
, “
A comparison of strain and fluid shear stress in stimulating bone cell responses: A computational and experimental study
,”
FASEB J.
19
(
3
),
1
484
(
2005
).
26.
E.
Nauman
,
R.
Satcher
,
T.
Keaveny
,
B.
Halloran
, and
D.
Bikle
, “
Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE2 but no change in mineralization
,”
J. Appl. Physiology
90
(
5
),
1849
1854
(
2001
). and
27.
J.
Graham
,
B.
Ayati
,
S.
Holstein
, and
J.
Martin
, “
The role of osteocytes in targeted bone remodeling: A mathematical model
,”
PLoS One
8
(
5
),
e63884
(
2013
).
28.
S.
Weinbaum
,
S.
Cowin
, and
Y.
Zeng
, “
A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses
,”
J. Biomech.
27
(
3
),
339
360
(
1994
).
29.
Y.
Yokoyama
,
Y.
Kameo
,
H.
Kamioka
, and
T.
Adachi
, “
High-resolution image-based simulation reveals membrane strain concentration on osteocyte processes caused by tethering elements
,”
Biomech. Model. Mechanobiol.
20
(
6
),
2353
2360
(
2021
).
30.
H.
Kamioka
,
Y.
Kameo
,
Y.
Imai
,
A. D.
Bakker
,
R. G.
Bacabac
,
N.
Yamada
,
A.
Takaoka
,
T.
Yamashiro
,
T.
Adachi
, and
J.
Klein-Nulend
, “
Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model
,”
Integr. Biol.
4
(
10
),
1198
1206
(
2012
).
31.
S. W.
Verbruggen
,
T. J.
Vaughan
, and
L. M.
McNamara
, “
Strain amplification in bone mechanobiology: A computational investigation of the in vivo mechanics of osteocytes
,”
J. R. Soc. Interface
9
(
75
),
2735
2744
(
2012
).
32.
E. J.
Anderson
,
S.
Kaliyamoorthy
,
J. I. D.
Alexander
, and
M. L. K.
Tate
, “
Nano-microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes
,”
Ann. Biomed. Eng.
33
(
1
),
52
62
(
2005
).
33.
C.
Liu
,
Y.
Zhao
,
W.-Y.
Cheung
,
R.
Gandhi
,
L.
Wang
, and
L.
You
, “
Effects of cyclic hydraulic pressure on osteocytes
,”
Bone
46
(
5
),
1449
1456
(
2010
).
34.
R.
Steck
and
M. L. K.
Tate
, “
In silico stochastic network models that emulate the molecular sieving characteristics of bone
,”
Ann. Biomed. Eng.
33
(
1
),
87
94
(
2005
).
35.
D.
Marsh
,
S. P.
Vanka
,
I. M.
Jasiuk
, and
M.
Knothe Tate
, “
Molecular dynamics computations of flow in constricted and wavy nano channels
,” in
ASME International Mechanical Engineering Congress and Exposition
(
2009
).
36.
E. J.
Anderson
and
M. L. K.
Tate
, “
Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes
,”
J. Biomech.
41
(
8
),
1736
1746
(
2008
).
37.
T.
Ganesh
,
L. E.
Laughrey
,
M.
Niroobakhsh
, and
N.
Lara-Castillo
, “
Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system
,”
Bone
137
,
115328
(
2020
).
38.
F.
Amirouche
and
A.
Bobko
, “
Bone remodeling and biomechanical processes—A multiphysics approach
,”
Austin J. Biotechnol. Bioeng.
2
(
2
),
1041
(
2015
).
39.
C. A.
Schurman
,
S. W.
Verbruggen
, and
T.
Alliston
, “
Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
25
),
e2023999118
(
2021
).
40.
Y. H.
Qian
, “
Lattice gas and lattice kinetic theory applied to the Navier-Stokes equations
,” Doktorarbeit (
Universite Pierre et Marie Curie
,
Paris
,
1990
).
41.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
42.
L.-S.
Luo
, “
Unified theory of lattice Boltzmann models for nonideal gases.
,”
Phys. Rev. Lett.
81
(
8
),
1618
(
1998
).
43.
D. A.
Wolf-Gladrow
,
Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction
(
Springer
,
2000
).
44.
S.
Succi
,
The Lattice-Boltzmann Equation
(
Oxford University Press
,
Oxford
,
2001
).
45.
H.
Huang
,
M.
Sukop
, and
X.
Lu
,
Multiphase Lattice Boltzmann Methods: Theory and Application
(
John Wiley & Sons
,
2015
).
46.
Z.
Guo
and
C.
Shu
,
Lattice Boltzmann Method and Its Applications in Engineering
(
World Scientific
,
2013
), Vol.
3
.
47.
L.
Zhu
,
D.
Tretheway
,
L.
Petzold
, and
C.
Meinhart
, “
Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann method
,”
J. Comput. Phys.
202
(
1
),
181
195
(
2005
).
48.
M.
Bouzidi
,
M.
Firdaouss
, and
P.
Lallemand
, “
Momentum transfer of a Boltzmann-lattice fluid with boundaries
,”
Phys. Fluids
13
(
11
),
3452
3459
(
2001
).
49.
Q.
Zou
and
X.
He
, “
On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
,”
Phys. Fluids
9
(
6
),
1591
1598
(
1997
).
50.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method
(
Springer
,
2017
), Vol.
10
, pp.
4
15
.
51.
PDE Solutions Inc.
,
FlexPDE 7: Version 7.17 Documentation
(
PDE Solutions, Inc
.,
Spokane Valley, WA
,
2021
).
52.
L. F.
Bonewald
and
M. L.
Johnson
, “
Osteocytes, mechanosensing and Wnt signaling
,”
Bone
42
(
4
),
606
615
(
2008
).
53.
G. C.
Goulet
,
D.
Coombe
,
R. J.
Martinuzzi
, and
R. F.
Zernicke
, “
Poroelastic evaluation of fluid movement through the lacunocanalicular system
,”
Ann. Biomed. Eng.
37
(
7
),
1390
1402
(
2009
).
54.
J.
Klein-Nulend
,
A. D.
Bakker
,
R. G.
Bacabac
,
A.
Vatsa
, and
S.
Weinbaum
, “
Mechanosensation and transduction in osteocytes
,”
Bone
54
(
2
),
182
190
(
2013
).
55.
S. W.
Verbruggen
,
T. J.
Vaughan
, and
L. M.
McNamara
, “
Fluid flow in the osteocyte mechanical environment: A fluid-structure interaction approach
,”
Biomech. Model. Mechanobiol.
13
(
1
),
85
97
(
2014
).
56.
X.
Wu
,
N.
Wang
,
Z.
Wang
,
W.
Yu
,
Y.
Wang
,
Y.
Guo
, and
W.
Chen
, “
Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon
,”
BioMed. Eng.
15
(
2
),
261
273
(
2016
).
57.
R. Y.
Kwon
and
J. A.
Frangos
, “
Quantification of lacunar–canalicular interstitial fluid flow through computational modeling of fluorescence recovery after photobleaching
,”
Cel. Mol. Bioeng.
3
(
3
),
296
306
(
2010
).
58.
L.
Cardoso
,
S. P.
Fritton
,
G.
Gailani
,
M.
Benalla
, and
S. C.
Cowin
, “
Advances in assessment of bone porosity, permeability and interstitial fluid flow
,”
J. Biomech.
46
(
2
),
253
265
(
2013
).
59.
J. C.
Coulombe
,
Z. K.
Mullen
,
A. M.
Wiens
,
L. E.
Fisher
,
M. E.
Lynch
,
L. S.
Stodieck
, and
V. L.
Ferguson
, “
Reduced local mechanical stimuli in spaceflight diminishes osteocyte lacunar morphometry and spatial heterogeneity in mouse cortical bone
,” bioRxiv (
2022
).
60.
C.
Mazur
and
T.
Alliston
, “Evidence for site-specific mechanoregulation of osteocyte perilacunar/canalicular remodeling,” in
Journal of Cone and Mineral Research
(
Wiley
,
Hoboken, NJ
,
2020
), Vol.
35
, p.
142
.
61.
R. Y.
Kwon
,
D. R.
Meays
,
A. S.
Meilan
,
J.
Jones
,
R.
Miramontes
,
N.
Kardos
,
J.-C.
Yeh
, and
J. A.
Frangos
, “
Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation
,”
PLoS One
7
(
3
),
e33336
(
2012
).
62.
A. F.
van Tol
,
V.
Schemenz
,
W.
Wagermaier
,
A.
Roschger
,
H.
Razi
,
I.
Vitienes
,
P.
Fratzl
,
B. M.
Willie
, and
R.
Weinkamer
, “
The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
51
),
32251
32259
(
2020
).
63.
M.
Wautelet
, “
Scaling laws in the macro-, micro-and nanoworlds
,”
Eur. J. Phys.
22
(
6
),
601
(
2001
).
64.
G. B.
West
and
J. H.
Brown
, “
Life's universal scaling laws
,”
Phys. Today
57
(
9
),
36
43
(
2004
).
65.
L.
Zhu
, “
Scaling laws for drag of a compliant body in an incompressible viscous flow
,”
J. Fluid Mech.
607
,
387
400
(
2008
).
66.
K.
Liu
,
M.
Allahyari
,
J.
Salinas
,
N.
Zgheib
, and
S.
Balachandar
, “
Investigation of theoretical scaling laws using large eddy simulations for airborne spreading of viral contagion from sneezing and coughing
,”
Phys. Fluids
33
(
6
),
063318
(
2021
).
67.
S.
Gupta
,
A.
Sharma
,
A.
Agrawal
,
M. C.
Thompson
, and
K.
Hourigan
, “
Hydrodynamics of a fish-like body undulation mechanism: Scaling laws and regimes for vortex wake modes
,”
Phys. Fluids
33
(
10
),
101904
(
2021
).
68.
S.
Alben
,
M.
Shelley
, and
J.
Zhang
, “
Drag reduction through self-similar bending of a flexible body
,”
Nature
420
(
6915
),
479
481
(
2002
).
69.
C. K.
Batchelor
and
G.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
2000
).
70.
Y.
Kameo
,
Y.
Ootao
, and
M.
Ishihara
, “
Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading
,”
Biomech. Model. Mechanobiol.
15
(
2
),
361
370
(
2016
).
71.
S.
Le Pense
and
Y.
Chen
, “
Contribution of fluid in bone extravascular matrix to strain-rate dependent stiffening of bone tissue—A poroelastic study
,”
J. Mech. Behavior Biomed. Mater.
65
,
90
101
(
2017
).
72.
W.
Sun
, “
On the theory of Biot-patchy-squirt mechanism for wave propagation in partially saturated double-porosity medium
,”
Phys. Fluids
33
(
7
),
076603
(
2021
).
73.
M. A.
Biot
, “
General theory of three‐dimensional consolidation
,”
J. Appl. Phys.
12
(
2
),
155
164
(
1941
).
74.
E. J.
Anderson
,
S. M.
Kreuzer
,
O.
Small
, and
M. L. K.
Tate
, “
Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro-and nano-scale pericellular spaces
,”
Microfluid. Nanofluid.
4
(
3
),
193
204
(
2008
).
75.
J. A.
White
,
R. I.
Borja
, and
J. T.
Fredrich
, “
Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations.
,”
Acta Geotech.
1
(
4
),
195
209
(
2006
).
76.
E. S.
Boek
and
M.
Venturoli
, “
Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries
,”
Comput. Math. Appl.
59
(
7
),
2305
2314
(
2010
).
77.
Q.
Kang
,
Lattice Boltzmann Simulation of Flow in Porous Media
(
The Johns Hopkins University
,
2004
).
78.
L.-D.
You
,
S.
Weinbaum
,
S. C.
Cowin
, and
M. B.
Schaffler
, “
Ultrastructure of the osteocyte process and its pericellular matrix
,”
Anat. Rec.
278A
(
2
),
505
513
(
2004
).
79.
T.
Lemaire
,
S.
Naïli
, and
A.
Rémond
, “
Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement with hydroelectrochemical effects
,”
J. Biomech. Eng.
130
(
1
),
011001
(
2008
).
80.
R.
Kumar
,
A. K.
Tiwari
,
D.
Tripathi
, and
A.
Mishra
, “
Electromagnetic field induced alterations in fluid flow through lacuno-canalicular system of bone
,”
int. J. Mech. Sci.
217
,
107036
(
2022
).
81.
P. H.
Gilbert
and
A. J.
Giacomin
, “
Molecular origins of higher harmonics in large-amplitude oscillatory shear flow: Shear stress response
,”
Phys. Fluids
28
(
10
),
103101
(
2016
).
82.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
(
4
),
043101
(
2017
).
83.
L. M.
Jbara
,
A. J.
Giacomin
, and
C.
Saengow
, “
Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow
,”
Phys. Fluids
32
(
3
),
031704
(
2020
).
84.
A.
Giacomin
,
L.
Jbara
, and
C.
Saengow
, “
Pattern method for higher harmonics from macromolecular orientation in oscillatory shear flow
,”
Phys. Fluids
32
(
1
),
011703
(
2020
).
85.
R.
Mei
,
D.
Yu
,
W.
Shyy
, and
L.-S.
Luo
, “
Force evaluation in the lattice Boltzmann method involving curved geometry
,”
Phys. Rev. E
65
(
4
),
041203
(
2002
).
86.
K.
Petersen
and
J.
Brinkerhoff
, “
On the lattice Boltzmann method and its application to turbulent, multiphase flows of various fluids including cryogens: A review
,”
Phys. Fluids
33
(
4
),
041302
(
2021
).
87.
S.
Succi
and
S.
Succi
,
The Lattice Boltzmann Equation: For Complex States of Flowing Matter
(
Oxford University Press
,
2018
).
88.
S.
Li
,
F.
Jiang
,
B.
Wei
,
J.
Hou
, and
H.
Liu
, “
Prediction of three-phase relative permeabilities of Berea sandstone using lattice Boltzmann method
,”
Phys. Fluids
33
(
6
),
063302
(
2021
).
89.
S.
Khirevich
and
T. W.
Patzek
, “
Behavior of numerical error in pore-scale lattice Boltzmann simulations with simple bounce-back rule: Analysis and highly accurate extrapolation
,”
Phys. Fluids
30
(
9
),
093604
(
2018
).
90.
A.
Phan
,
D.
Fan
, and
A.
Striolo
, “
Fluid transport through heterogeneous pore matrices: Multiscale simulation approaches
,”
Phys. Fluids
32
(
10
),
101301
(
2020
).
91.
P.
Goggin
,
K.
Zygalakis
,
R.
Oreffo
, and
P.
Schneider
, “
High-resolution 3D imaging of osteocytes and computational modelling in mechanobiology: Insights on bone development, ageing, health and disease
,”
Eur. Cell Mater.
31
,
264
295
(
2016
).
92.
H.
Yokota
,
A.
Tovar
, and
A.
Robling
, “
Dynamic muscle loading and mechanotransduction
,”
Bone
51
(
4
),
826
827
(
2012
).
93.
S.
Kapur
,
D. J.
Baylink
, and
K.-H. W.
Lau
, “
Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways
,”
Bone
32
(
3
),
241
251
(
2003
).
94.
M. P.
Duffy
,
The Osteocyte Primary Cilium is a Mechanoresponsive Organelle That Regulates Cytoskeletal Adaptation and Coordinates Mechanotransduction With Adenylyl Cyclases
(
Columbia University
,
2021
).
You do not currently have access to this content.