The first law of thermodynamics reveals that all fluids are compressible, and the second law of thermodynamics entails all fluids to have positive viscosity. These established laws reaffirm the possibilities of the occurrence of Sanal flow choking in yocto to yotta scale systems and beyond [Kumar et al., “Discovery of nanoscale Sanal flow choking in cardiovascular system: Exact prediction of the 3D boundary-layer-blockage factor in nanotubes,” Sci. Rep. 11, 15429 (2021); “Sanal flow choking: A paradigm shift in computational fluid dynamics code verification and diagnosing detonation and hemorrhage in real-world fluid-flow systems,” Global Challenges 4, 2000012 (2020)]. The Sanal flow choking occurs in the real-world flows at a critical total-to-static pressure ratio [Kumar et al., “Abstract P422: Sanal flow choking leads to hemorrhagic stroke and other neurological disorders in earth and human spaceflight,” Circul. Res. 129(1), AP422 (2021)]. At the Sanal flow choking condition, the Rayleigh-flow-effect (thermal choking) and the Fanno-flow-effect (choking due to frictional effects) unite at a unique site of the sonic-fluid-throat. In this article, the two-dimensional (2D) and the three-dimensional (3D) boundary-layer-blockage factors and average friction coefficient are generated for different working fluids passing through a cylindrical port, at the Sanal flow choking condition, as universal benchmark data for a credible verification of in silico codes for both adiabatic and diabatic flows. The outlook, advancement, and significance of the analytical methodology, invoked for developing Sanal flow choking model using well-posed initial conditions, for generating the universal benchmark data for computational fluid dynamics code verification are critically reviewed herein. The closed-form analytical models presented herein for predicting the 2D and the 3D boundary-layer-blockage factors at the sonic-fluid-throat of adiabatic and diabatic flows and average friction coefficient in a circular duct at the Sanal flow choking condition are fabulously unaffected with any errors due to discretization and fully freed from empiricism for a credible decision making on various high fidelity numerical simulations. The Sanal flow choking model offers the luxury to the scientific community for solving numerous unresolved problems in boundary layer theory. It provides universal benchmark data for various applications irrespective of the laminar/turbulence flow features in wall-bounded compressible viscous flow systems. The 2D and 3D in silico simulation results are presented for demonstrating conclusively the possibilities of the occurrence of the Sanal flow choking and streamtube flow choking [Kumar et al., “The theoretical prediction of the boundary layer blockage and external flow choking at moving aircraft in ground effects,” Phys. Fluids 33(3), 036108 (2021).] in internal and external flows. The phenomenological manifestation of the flow choking phenomenon reported herein extends disruptive technologies at the cutting-edge to solve century-long unresolved scientific problems in physics of fluids with credibility.

1.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
A.
Sukumaran
,
A. R. M. R.
Sulthan
 et al, “
Sanal flow choking: A paradigm shift in computational fluid dynamics code verification and diagnosing detonation and hemorrhage in real-world fluid-flow systems
,”
Global Challenges
4
,
2000012
(
2020
).
2.
T.
Hayase
, “
Numerical simulation of real-world flows
,”
Fluid Dyn. Res.
47
,
051201
(
2015
).
3.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
V.
Saravanan
,
V.
Natarajan
,
S.
Padmanabhan
,
A.
Sukumaran
 et al, “
A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers
,”
AIP Adv.
8
,
025315
(
2018
).
4.
V.
Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
S.
Rahman Mohamed Rafc
,
A.
Sukumaran
,
P.
Kumar Radhakrishnan
, and
S. K.
Choudhary
, “
Discovery of nanoscale Sanal flow choking in cardiovascular system: Exact prediction of the 3D boundary-layer-blockage factor in nanotubes
,”
Sci. Rep.
11
,
15429
(
2021
).
5.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
A.
Sukumaran
,
S. A.
Rafic
,
R. S.
Bharath
,
R. V.
Baskaran
,
C.
Oommen
,
P. K.
Radhakrishnan
, and
S. K.
Choudhary
, “
Discovery of Sanal flow choking phenomenon
,” Patent No. IN201841049355 (4 January
2019
).
6.
R.
Balescu
,
Equilibrium and Non-Equilibrium Statistical Mechanics
(
John Wiley & Sons
,
1975
).
7.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed. (
Elsevier
,
1987
).
8.
V. R.
Sanal Kumar
,
V.
Saravanan
,
V.
Srinivasan
,
S. G.
Shankar
,
S.
Mani
,
V.
Sankar
,
D.
Krishnamoorthy
 et al, “
The theoretical prediction of the boundary layer blockage and external flow choking at moving aircraft in ground effects
,”
Phys. Fluids
33
(
3
),
036108
(
2021
).
9.
C.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
2015
).
10.
M. T.
Gevari
,
A. H.
Shafaghi
,
L. G.
Villanueva
,
M.
Ghorbani
, and
A.
Koşar
, “
Engineered lateral roughness element implementation and working fluid alteration to intensify hydrodynamic cavitating flows on a chip for energy harvesting
,”
Micromachines
11
(
1
),
49
(
2020
).
11.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
R. S.
Bharath
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
, and
C.
Oommen
,
Internal Flow Choking in Cardiovascular System: A Radical Theory in the Risk Assessment
(
IntechOpen
,
2021
).
12.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
R. S.
Bharath
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
, and
C.
Oommen
, “
Lopsided blood-thinning drug increases the risk of internal flow choking leading to shock wave generation causing asymptomatic cardiovascular disease
,”
Global Challenges
5
,
2000076
(
2021
).
13.
V. R.
Sanal Kumar
,
R. S.
Bharath
,
P. K.
Radhakrishnan
,
N.
Chandrasekaran
,
S. K.
Choudhary
,
O.
Charlie
 et al, “
Nanoscale flow choking and spaceflight effects on cardiovascular risk of astronauts—A new perspective
,” AIAA Paper No. 2021-0357,
2021
.
14.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
S.
Menon
,
V.
Raghav
,
K. K.
Narayanan Namboodiri
,
S. E.
Sreedharan
,
R. S.
Bharath
,
N.
Chandrasekaran
,
C.
Oommen
,
V.
Sankar
,
A.
Sukumaran
,
A.
Krishnan
,
A.
Pal
,
T.
Ramesh Kumar
, and
A.
Rajesh
, “
Lopsided blood-thinning drug increases the risk of internal flow choking and shock wave generation causing asymptomatic stroke
,” in
International Stroke Conference
(
American Stroke Association
,
2021
).
15.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
V.
Saravanan
,
V.
Natarajan
,
S.
Padmanabhan
,
A.
Sukumaran
,
S.
Mani
,
T.
Rameshkumar
,
N. D.
Hemasai
 et al, “
Boundary layer blockage, venturi effect and cavitation causing aerodynamic choking and shock waves in human artery leading to hemorrhage and massive heart attack—A new perspective
,” AIAA Paper No. 2018-3962,
2018
.
16.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
S.
Menon
,
V.
Raghav
,
K. K.
Narayanan Namboodiri
,
S. E.
Sreedharan
,
R. S.
Bharath
,
N.
Chandrasekaran
,
C.
Oommen
,
V.
Sankar
,
A.
Sukumaran
,
A.
Krishnan
,
A.
Pal
,
T.
Ramesh kumar
,
G. V.
Panicker
, and
A.
Rajesh
, “
Sanal flow choking leads to hemorrhagic stroke and other neurological disorders in earth and human spaceflight,” paper presented at the Basic Cardiovascular Sciences Conference, 2021; “Abstract P422: Sanal flow choking leads to hemorrhagic stroke and other neurological disorders in earth and human spaceflight
,”
Circul. Res.
129
(
1
),
AP422
(
2021
).
17.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
R. S.
Bharath
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
, and
C.
Oommen
, “
COVID 19 pandemic: High BPR and low BHCR are risk factors of asymptomatic cardiovascular diseases
,”
Virol. Mycol. Open Access
10
(
3
),
204
(
2021
).
18.
V. R.
Sanal Kumar
,
R. S.
Bharath
,
N.
Chandrasekaran
,
C.
Oommen
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
, and
B. N.
Raghunandan
, “
High heat capacity of blood reduces risk on myocardial infarction
,”
BioGenesis
1
,
41
(
2018
).
19.
V. R.
Sanal Kumar
,
R. S.
Bharath
,
N.
Chandrasekaran
,
C.
Oommen
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
, and
B. N.
Raghunandan
, “
In vitro prediction of the lower critical hemorrhage index
,” paper presented at the
Asian Society for Cardiovascular and Thoracic Surgery, IACTSCON2019
, Chennai, India, February
2019
.
20.
J.
Whitton
, “
Plant biodiversity—Overview
,” in
Encyclopedia of Biodiversity
, edited by
S. A.
Levin
, 2nd ed. (
Academic Press
,
2013
), pp.
56
64
.
21.
S.
Badal
and
R.
Delgoda
,
Pharmacognosy: Fundamentals, Applications and Strategies
(
Academic Press
,
2017
).
22.
J.
Hargrove
, “
Supercavitation and aerospace technology in the development of high-speed underwater vehicles
,” AIAA Paper No. 2004-130,
2004
.
23.
V. R.
Sanal Kumar
,
V.
Sankar
,
V.
Natarajan
,
N.
Chandrasekaran
,
V.
Saravanan
,
S.
Padmanabhan
,
M.
Sulthan Ariff Rahman
,
R. V.
Baskaran
, and
U.
Harisrinivasan
, “
A closed-form analytical model for predicting 2D boundary layer thickness for verification, calibration and validation of Navier–Stokes solvers
,” AIAA Paper No. 2018-3554,
2018
.
24.
V.
Sankar
,
V.
Natarajan
,
N.
Chandrasekaran
,
M.
Sulthan Ariff Rahman
,
R. V.
Baskaran
, and
V. R.
Sanal Kumar
, “
3D boundary layer blockage and the average friction coefficient at the Sanal flow choking condition for the CFD code validation, calibration and verification
,” AIAA Paper No. 2018-4883,
2018
.
25.
V.
Kumar
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
,
V.
Rajendran
,
S.
Balusamy
 et al, “
The physics of detonation chemistry: A radical theory in predicting the deflagration to detonation transition, environmental and supernova explosions
,” AIAA Paper No. 2021-3242,
2021
.
26.
V. R.
Sanal Kumar
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
 et al, “
Deflagration to detonation transition in chemical rockets with sudden expansion / divergence regions
,” AIAA Paper No. 2020-3520,
2020
.
27.
A.
Sukumaran
,
C.
Nichith
,
S.
Vigneshwaran
,
A.
Mariappan
,
A.
Moorthi
,
S.
Ragupathi
,
R.
Vishak
,
M.
Sultan Ariff Rahman
,
C.
Oommen
, and
V.
Kumar
, “
Studies on flame spread acceleration and detonation kernel in a dual-thrust rocket
,” AIAA Paper No. 2019-4209,
2019
.
28.
M. A.
Liberman
,
M. F.
Ivanov
,
A. D.
Kiverin
,
M. S.
Kuznetsov
,
A. A.
Chukalovsky
, and
T. V.
Rakhimova
, “
Deflagration-to-detonation transition in highly reactive combustible mixtures
,”
Acta Astronaut.
67
(
7–8
),
688
701
(
2010
).
29.
J.
Buckmaster
,
P.
Clavin
,
A.
Liñán
,
M.
Matalon
,
N.
Peters
,
G.
Sivashinsky
, and
F. A.
Williams
, “
Combustion theory and modeling
,”
Proc. Combust. Inst.
30
(
1
),
1
19
(
2005
).
30.
C. K.
Westbrook
,
Y.
Mizobuchi
,
T. J.
Poinsot
,
P. J.
Smith
, and
J.
Warnatz
, “
Computational combustion
,”
Proc. Combust. Inst.
30
(
1
),
125
157
(
2005
).
31.
V. R.
Katta
,
K. Y.
Cho
,
J. L.
Hoke
,
J. R.
Codoni
,
F. R.
Schauer
, and
W. M.
Roquemore
, “
Effect of increasing channel width on the structure of rotating detonation wave
,”
Proc. Combust. Inst.
37
(
3
),
3575
3583
(
2019
).
32.
A.
Kawasaki
,
T.
Inakawa
,
J.
Kasahara
,
K.
Goto
,
K.
Matsuoka
,
A.
Matsuo
, and
I.
Funaki
, “
Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster
,”
Proc. Combust. Inst.
37
(
3
),
3461
3469
(
2019
).
33.
S. I.
Jackson
,
C.
Chiquete
, and
M.
Short
, “
An intrinsic velocity–curvature–acceleration relationship for weakly unstable gaseous detonations
,”
Proc. Combust. Inst.
37
(
3
),
3601
3607
(
2019
).
34.
J.
Chao
,
T.
Otsuka
, and
J. H. S.
Lee
, “
An experimental investigation of the onset of detonation
,”
Proc. Combust. Inst.
30
(
2
),
1889
1897
(
2005
).
35.
J.-L.
Li
,
W.
Fan
,
C.-J.
Yan
,
H.-Y.
Tu
, and
K.-C.
Xie
, “
Performance enhancement of a pulse detonation rocket engine
,”
Proc. Combust. Inst.
33
(
2
),
2243
2254
(
2011
).
36.
E. S.
Oran
, “
Understanding explosions—From catastrophic accidents to creation of the universe
,”
Proc. Combust. Inst.
35
(
1
),
1
35
(
2015
).
37.
S.
Maeda
,
M.
Fujisawa
,
S.
Ienaga
,
K.
Hirahara
, and
T.
Obara
, “
Effect of sandpaper-like small wall roughness on deflagration-to-detonation transition in a hydrogen–oxygen mixture
,”
Proc. Combust. Inst.
37
(
3
),
3609
3616
(
2019
).
38.
C. T.
Johansen
and
G.
Ciccarelli
, “
Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel
,”
Combust. Flame
156
(
2
),
405
416
(
2009
).
39.
S. I.
Jackson
and
L. G.
Hill
, “
Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack
,”
Proc. Combust. Inst.
32
(
2
),
2307
2313
(
2009
).
40.
J.
Czerwinska
, “
Continuum and non-continuum models for micro- and nanoflows
,” in
VKI-RTO Lectures Monography
,
2009
.
41.
X.
Lin
,
F.-B.
Bao
,
X.
Gao
, and
J.
Chen
, “
Molecular dynamics simulation of nanoscale channel flows with rough wall using the virtual-wall model
,”
J. Nanotechnol.
2018
,
4631253
.
42.
M. W.
Collins
and
C. S.
König
,
Micro and Nano Flow Systems for Bioanalysis
(
Springer
,
New York
,
2012
).
43.
M. Z.
Yu
,
X. T.
Zhang
,
G. D.
Jin
,
J. Z.
Lin
, and
M.
Seipenbusch
, “
A new moment method for solving the coagulation equation for particles in Brownian motion
,”
Aerosol Sci. Technol.
42
(
9
),
705
713
(
2008
).
44.
M.
Gad-el-Hak
,
MEMS: Introduction and Fundamentals
(
CRC Press
,
Boca Raton, FL
,
2010
).
45.
M.
Whitby
and
N.
Quirke
, “
Fluid flow in carbon nanotubes and nanopipes
,”
Nat. Nanotechnol.
2
,
87
94
(
2007
).
46.
Q.-L.
Yan
,
M.
Gozin
,
F.-Q.
Zhao
,
A.
Cohen
, and
S.-P.
Pang
, “
Highly energetic compositions based on functionalized carbon nanomaterials
,”
Nanoscale
8
(
9
),
4799
4851
(
2016
).
47.
G. V.
Sakovich
,
A. S.
Zharkov
, and
E. A.
Petrov
, “
Results of research into the physicochemical processes of detonation synthesis and nanodiamond applications
,”
Nanotechnol. Russ.
8
,
581
591
(
2013
).
48.
M.
Huo
,
L.
Wang
,
Y.
Chen
, and
J.
Shi
, “
Nanomaterials/microorganism-integrated microbiotic nanomedicine
,”
Nano Today
32
,
100854
(
2020
).
49.
J. J.
Wang
,
R. T.
Zheng
,
J. W.
Gao
, and
G.
Chen
, “
Heat conduction mechanisms in nanofluids and suspensions
,”
Nano Today
7
(
2
),
124
136
(
2012
).
50.
S.
Hauert
,
S.
Berman
,
R.
Nagpal
, and
S. N.
Bhatia
, “
A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors
,”
Nano Today
8
(
6
),
566
576
(
2013
).
51.
C.
Sealy
, “
A new twist on growing carbon nanotubes
,”
Nano Today
30
,
100840
(
2020
).
52.
“The risks of nanomaterial risk assessment,”
Nat. Nanotechnol.
15
,
163
(
2020
).
53.
Y.
Matsumoto
,
J. W.
Nichols
,
K.
Toh
,
T.
Nomoto
,
H.
Cabral
,
Y.
Miura
, and
K.
Kataoka
, “
Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery
,”
Nat. Nanotechnol.
11
(
6
),
533
538
(
2016
).
54.
S.
White
and
P.
Geubelle
, “
Get ready for repair-and-go
,”
Nat. Nanotechnol.
5
,
247
248
(
2010
).
55.
R.
Cingolani
, “
The road ahead
,”
Nat. Nanotechnol.
8
,
792
793
(
2013
).
56.
M.
Faria
,
M.
Björnmalm
,
K. J.
Thurecht
 et al, “
Minimum information reporting in bio–nano experimental literature
,”
Nature Nanotechnol.
13
,
777
785
(
2018
).
57.
A.
Moscatelli
, “
Nanoparticles go with the flow
,”
Nat. Nanotechnol.
(
2013
).
58.
X.
Ding
,
P.
Li
,
S.-C. S.
Lin
,
Z. S.
Stratton
,
N.
Nama
,
F.
Guo
, and
T. J.
Huang
, “
Surface acoustic wave microfluidics
,”
Lab Chip
13
(
18
),
3626
(
2013
).
59.
D.
Mark
,
S.
Haeberle
,
G.
Roth
,
F.
von Stetten
, and
R.
Zengerle
, “
Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications
,”
Chem. Soc. Rev.
39
(
3
),
1153
(
2010
).
60.
M. K.
Tan
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Microparticle collection and concentration via a miniature surface acoustic wave device
,”
Lab Chip
7
,
618
625
(
2007
).
61.
F.
Paratore
,
V.
Bacheva
,
G. V.
Kaigala
, and
M.
Bercovici
, “
Dynamic microscale flow patterning using electrical modulation of zeta potential
,”
Proc. Natl. Acad. Sci. USA.
116
(
21
),
10258
10263
(
2019
).
62.
V. R.
Sanal Kumar
,
B. N.
Raghunandan
,
T.
Kawakami
,
H. D.
Kim
,
T.
Setoguchi
, and
S.
Raghunathan
, “
Studies on boundary layer blockage and internal flow choking in dual-thrust motors
,”
AIAA J. Propul. Power
24
(
2
),
224
234
(
2008
).
63.
V. R.
Sanal Kumar
,
H. D.
Kim
,
B. N.
Raghunandan
,
A.
Sameen
,
T.
Setoguchi
, and
S.
Raghunathan
, “
Fluid-throat induced shock waves during the ignition transient of solid rockets
,”
AIAA J. Spacecr. Rockets
43
(
1
),
225
228
(
2006
).
64.
V. R.
Sanal Kumar
,
B. N.
Raghunandan
,
H. D.
Kim
,
A.
Sameen
,
T.
Setoguchi
, and
S.
Raghunathan
, “
Starting transient flow phenomena in inert simulators of SRMs with divergent ports
,”
AIAA J. Propul. Power
22
(
5
),
1138
1141
(
2006
).
65.
V. R.
Sanal Kumar
,
B. N.
Raghunandan
,
H. D.
Kim
,
A.
Sameen
,
T.
Setoguchi
, and
S.
Raghunathan
, “
Studies on internal flow choking in dual-thrust motors
,”
AIAA J. Spacecr. Rockets
43
(
5
),
1139
1143
(
2006
).
66.
G. A.
Marxman
,
C. E.
Wooldridge
, and
R. J.
Muzzy
, “
Fundamentals of hybrid boundary layer combustion
,”
Prog. Astronaut. Aeronaut.
15
,
485
521
(
1964
).
67.
G. A.
Marxman
, “
Combustion in the turbulent boundary layer on a vaporizing surface
,” in
Proceedings of the Tenth Symposium on Combustion
(
Elsevier
,
1965
), pp.
1337
1349
.
68.
J.
Majdalani
, “
Boundary-layer structure in cylindrical rocket motors
,”
AIAA J.
37
(
4
),
505
508
(
1999
).
69.
J.
Majdalani
,
A. B.
Vyas
, and
G. A.
Flandro
, “
Higher mean-flow approximation for a solid rocket motor with radially regressing walls
,”
AIAA J.
40
(
9
),
1780
1788
(
2002
).
70.
R.
Dunlap
,
P. G.
Willoughby
, and
R. W.
Hermsen
, “
Flow field in the combustion chamber of a solid propellant rocket motor
,”
AIAA J.
12
(
10
),
1440
1445
(
1974
).
71.
G. I.
Taylor
, “
Fluid flow in regions bounded by porous surfaces
,”
Proc. R. Soc. London, Ser. A
234
(
1199
),
456
475
(
1956
).
72.
F. E. C.
Culick
, “
Rotational axisymmetric mean flow and damping of acoustic waves in a solid propellant rocket
,”
AIAA J.
4
(
8
),
1462
1464
(
1966
).
73.
S.
Apte
and
V.
Yang
, “
Unsteady flow evolution in a porous chamber with surface mass injection. Part 1: Free oscillation
,”
AIAA J.
39
(
8
),
1577
1586
(
2001
).
74.
J.
Majdalani
, “
Analytical models for hybrid rockets
,” in
Fundamentals of Hybrid Rocket Combustion and Propulsion
, edited by
K. K.
Kuo
and
M. J.
Chiaverini
(
AIAA
,
2007
), pp.
207
246
.
75.
H.
Krier
and
H.
Kerzner
, “
Analysis of the chemically reacting boundary layer during hybrid combustion
,”
AIAA J.
11
(
12
),
1691
1698
(
1973
).
76.
H.
Tian
,
R.
Yu
,
H.
Zhu
,
J.
Wu
, and
G.
Cai
, “
Three-dimensional numerical and experimental studies on transient ignition of hybrid rocket motor
,”
Acta Astronaut.
140
,
247
254
(
2017
).
77.
V. R.
Sanal Kumar
,
V.
Sankar
,
N.
Chandrasekaran
,
P.
Murugesh
,
S. A.
Rahman M
, and
R. V.
Baskaran
, “
Prediction of 3D boundary layer blockage and the grain design optimization of HVT dual-thrust hybrid rockets
,” AIAA Paper No. 2018-4446,
2018
.
78.
F. S.
Blomshield
,
J. E.
Crump
,
H. B.
Mathes
,
R. A.
Stalnaker
, and
M. W.
Beckstead
, “
Stability testing of full-scale tactical motors
,”
J. Propul. Power
13
(
3
),
349
355
(
1997
).
79.
E.
Cavallini
,
B.
Favini
,
M. D.
Giacinto
, and
F.
Serraglia
, “
Internal ballistics simulation of a NAWC tactical SRM
,”
J. Appl. Mech.
78
,
051018
(
2011
).
80.
J.
Wang
and
D. D.
Joseph
, “
Boundary-layer analysis for effects of viscosity of the irrotational flow on the flow induced by a rapidly rotating cylinder in a uniform stream
,”
J. Fluid Mech.
557
,
167
190
(
2006
).
81.
J.-P.
Laval
,
J. C.
Vassilicos
,
J.-M.
Foucaut
, and
M.
Stanislas
, “
Comparison of turbulence profiles in high-Reynolds-number turbulent boundary layers and validation of a predictive model
,”
J. Fluid Mech.
814
,
R2
(
2017
).
82.
L. F.
Richardson
, “
The deferred approach to limit, I—Single lattice
,”
Philos. Trans. R. Soc. London, Ser. A
226
,
299
349
(
1927
).
83.
C.
Burg
and
T.
Erwin
, “
Application of Richardson extrapolation to the numerical solution of partial differential equations
,”
Numer. Methods Partial Differ. Eq.
25
(
4
),
810
832
(
2009
).
84.
P. J.
Roache
, “
Quantification of uncertainty in computational fluid dynamics
,”
Annu. Rev. Fluid Mech.
29
,
123
160
(
1997
).
85.
P. J.
Roache
, “
Code verification by the method of manufactured solutions
,”
J. Fluids Eng.
124
(
1
),
4
10
(
2002
).
86.
P. J.
Roache
and
S.
Steinberg
, “
Symbolic manipulation and computational fluid dynamics
,”
AIAA J.
22
(
10
),
1390
1394
(
1984
).
87.
C.
Hirsch
,
Numerical Computation of Internal and External Flows
, Fundamentals of Numerical Discretization (
Wiley
,
New York
,
1988
), Vol.
1
, pp.
267
282
.
88.
A.
Bonfiglioli
and
R.
Paciorri
, “
Convergence analysis of shock-capturing and shock-fitting solutions on unstructured grids
,”
AIAA J.
52
(
7
),
1404
1416
(
2014
).
89.
J. M.
Powers
and
S.
Paolucci
, “
Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry
,”
AIAA J.
43
(
5
),
1088
1099
(
2005
).
90.
J. M.
Powers
and
T. D.
Aslam
, “
Exact solution for multidimensional compressible reactive flow for verifying numerical algorithms
,”
AIAA J.
44
(
2
),
337
344
(
2006
).
91.
L. D.
Huebner
and
K. E.
Tatum
, “
CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model
,” AIAA Paper No. 1993-3041,
1993
.
92.
W. L.
Oberkampf
and
T. G.
Trucano
, “
Verification and validation in computational fluid dynamics
,”
Prog. Aerosp. Sci.
38
(
3
),
209
272
(
2002
).
93.
W. L.
Oberkampf
and
G. T.
Trucano
, “
Verification and validation benchmarks
,”
Nucl. Eng. Des.
238
,
716
743
(
2008
).
94.
C. J.
Roy
,
M. A.
McWherter-Payne
, and
W. L.
Oberkampf
, “
Verification and validation for laminar hypersonic flowfields, part 1: Verification
,”
AIAA J.
41
(
10
),
1934
1943
(
2003
).
95.
C. J.
Roy
,
C. C.
Nelson
,
T. M.
Smith
, and
C. C.
Ober
, “
Verification of Euler/ Navier–Stokes codes using the method of manufactured solutions
,”
Int. J. Numer. Methods Fluids
44
(
6
),
599
620
(
2004
).
96.
C. J.
Roy
, “
Review of code and solution verification procedures for computational simulation
,”
J. Comput. Phys.
205
(
1
),
131
156
(
2005
).
97.
J. L.
Thomas
,
B.
Diskin
, and
C. L.
Rumsey
, “
Toward verification of unstructured-grid solvers
,”
AIAA J.
46
(
12
),
3070
3079
(
2008
).
98.
J.
Iannelli
, “
An exact non-linear Navier–Stokes compressible-flow solution for CFD code verification
,”
Int. J. Numer. Methods Fluids
72
,
157
176
(
2012
).
99.
J.
Anderson
, Jr.
,
Modern Compressible Flow, With Historical Perspective
, 4th ed. (
McGraw-Hill Publishing Company
,
2007
).
100.
V. R.
Sanal Kumar
, et al., “
Abstract AP804:Lopsided blood-thinning drug increases the risk of internal flow choking and shock wave generation causing asymptomatic stroke
,”
Stroke.
52
,
804
(
2021
).
101.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
S.
Menon
,
V.
Raghav
,
K. K.
Narayanan Namboodiri
,
S. E.
Sreedharan
,
R. S.
Bharath
,
N.
Chandrasekaran
,
C.
Oommen
,
V.
Sankar
,
A.
Sukumaran
,
A.
Krishnan
,
A.
Pal
,
T.
Ramesh kumar
,
G. V.
Panicker
, and
A.
Rajesh
, “
Sanal flow choking leads to hemorrhagic stroke and other neurological disorders in earth and human spaceflight
,”
paper presented at the Basic Cardiovascular Sciences Conference
, American Heart Association, 23–25 August
2021
.
102.
V. R.
Sanal Kumar
,
S.
Kumar Choudhary
,
P.
Kumar Radhakrishnan
,
R.
Sundararam Bharath
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
, and
C.
Oommen
, “
Very low and high blood viscosity are risk factors for internal flow choking causing asymptomatic cardiovascular disease
,”
Nat. Sci. Rep.
(unpublished).
103.
J. T.
Fifi
and
J.
Mocco
, “
COVID-19 related stroke in young individuals
,”
Lancet Neurol.
19
,
713
(
2020
).
104.
M. A.
Ellul
,
L.
Benjamin
,
B.
Singh
 et al, “
Neurological associations of COVID-19
,”
Lancet Neurol.
19
,
767
783
(
2020
).
105.
S.
Yaghi
,
K.
Ishida
,
J.
Torres
 et al, “
SARS-CoV-2 and stroke in a New York healthcare system
,”
Stroke
51
,
2002
2011
(
2020
).
106.
A. P.
Kansagra
,
M. S.
Goyal
,
S.
Hamilton
, and
G. W.
Albers
, “
Collateral effect of COVID-19 on stroke evaluation in the United States
,”
N. Engl. J. Med.
383
,
400
401
(
2020
).
107.
J. E.
Siegler
,
M. E.
Heslin
,
L.
Thau
,
A.
Smith
, and
T. G.
Jovin
, “
Falling stroke rates during COVID-19 pandemic at a comprehensive stroke center
,”
J Stroke Cerebrovasc. Dis.
29
,
104953
(
2020
).
108.
M.
Marshall
, “
How COVID-19 can damage the brain
,”
Nature
585
,
342
343
(
2020
).
109.
J. D.
Whitman
,
J.
Hiatt
,
C. T.
Mowery
 et al, “
Evaluation of SARS-CoV-2 serology assays reveals a range of test performance
,”
Nat. Biotechnol.
38
,
1174
1183
(
2020
).
110.
A.
Sharifi-Razavi
,
N.
Karimi
, and
N.
Rouhani
, “
COVID-19 and intracerebral haemorrhage: Causative or coincidental?
,”
New Microbes New Infect.
35
,
100669
(
2020
).
111.
R.
Sahathevan
,
A.
Brodtmann
, and
G. A.
Donnan
, “
Dementia, stroke, and vascular risk factors; A review
,”
Int. J. Stroke
7
(
1
),
61
73
(
2012
).
112.
J. V.
Tu
, “
Reducing the global burden of stroke: INTERSTROKE
,”
Lancet
376
(
9735
),
74
75
(
2010
).
113.
C.
Qiu
,
B.
Winblad
, and
L.
Fratiglioni
, “
Te age-dependent relation of blood pressure to cognitive function and dementia
,”
Lancet Neurol.
4
(
8
),
487
499
(
2005
).
114.
M. F.
O'Rourke
and
M. E.
Safar
, “
Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy
,”
Hypertension
46
(
1
),
200
204
(
2005
).
115.
W. I.
Rosenblum
, “
Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: A critical reappraisal
,”
Acta Neuropathol.
116
,
361
369
(
2008
).
116.
L. J.
Beilin
and
F. S.
Goldby
, “
High arterial pressure versus humoral factors in the pathogenesis of the vascular lesions of malignant hypertension. The case for pressure alone
,”
Clin. Sci. Mol. Med.
52
,
111
113
(
1977
).
117.
J.
Mohring
, “
High arterial pressure versus humoral factors in the pathogenesis of the vascular lesions of malignant hypertension. The case for humoral factors as well as pressure
,”
Clin. Sci. Mol. Med.
52
,
111
117
(
1977
).
118.
W.
Caleb Rutledge
,
N. U.
Ko
,
M. T.
Lawton
, and
H.
Kim
, “
Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations
,”
Transl. Stroke Res.
5
(
5
),
538
542
(
2014
).
119.
Z.
Khayyam-Nekouei
,
H.
Neshatdoost
,
A.
Yousefy
,
M.
Sadeghi
, and
G.
Manshaee
, “
Psychological factors and coronary heart disease
,”
ARYA Atheroscler.
9
(
1
),
102
111
(
2013
); available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653260/.
120.
H.
Yang
,
Y.
Wang
,
K.
Negishi
 et al, “
Pathophysiological effects of different risk factors for heart failure
,”
Open Heart
3
,
e000339
(
2016
).
121.
L.
Geraghty
,
G. A.
Figtree
,
A. E.
Schutte
,
S.
Patel
,
M.
Woodward
, and
C.
Arnott
, “
Cardiovascular disease in women: From pathophysiology to novel and emerging risk factors
,”
Heart, Lung Circ.
30
(
1
),
9
17
(
2021
).
122.
S.
Stewart
,
A.
Keates
,
A.
Redfern
, and
J. V. M.
John
, “
Seasonal variations in cardiovascular disease
,”
Nat. Rev. Cardiol.
14
,
654
664
(
2017
).
123.
C. D.
Fryar
,
T.-C.
Chen
, and
X.
Li
, “
Prevalence of uncontrolled risk factors for cardiovascular disease: United States, 1999–2010
,”
NCHS Data Brief
103
,
1
8
(
2012
); available at https://pubmed.ncbi.nlm.nih.gov/23101933/.
124.
O.
Hahad
 et al, “
The cardiovascular effects of noise
,”
Dtsch. Arzteblatt Int.
116
(
14
),
245
250
(
2019
).
125.
F. P.
Nzvere
 et al, “
Long-term cardiovascular diseases of heatstroke: A delayed pathophysiology outcome
,”
Cureus
12
(
8
),
e9595
(
2020
).
126.
R.
Agarwal
, “
Blood pressure components and the risk for end-stage renal disease and death in chronic kidney disease
,”
CJASN
4
(
4
),
830
837
(
2009
).
127.
L.
Prandtl
, “
Über flüssigkeitsbewegungen bei sehr kleiner reibung
,” in
Verhandlungen des III
(
Internationalen Mathematiker Kongresses
,
1904
), pp.
484
491
.
128.
H.
Blasius
, “
Grenzschichten in flüssigkeiten mit kleiner reibung
,”
J. Appl. Math. Mech.
56
,
1
37
(
1908
).
129.
T. V.
Kármán
, “
Über laminare und turbulente feibung
,”
J. Appl. Math. Mech.
1
,
233
252
(
1921
).
130.
K.
Pohlhausen
, “
Zur näherungsweisen integration der differentialgleichung der iaminaren grenzschicht
,”
J. Appl. Math. Mech.
1
,
252
290
(
1921
).
131.
L.
Rosenhead
,
Laminar Boundary Layer
(
Oxford University Press
,
London
,
1963
).
132.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
, 9th ed. (
SpringerVerlag
,
Berlin
,
2017
).
133.
T.
Cebeci
and
J.
Cousteix
,
Modeling and Computation of Boundary-Layer Flows
(
Horizons
,
Long Beach, CA
,
1998
).
134.
O. A.
Oleinik
and
V. N.
Samokhin
,
Mathematical Models in Boundary Layer Theory
(
CRC Press
,
London
,
1999
).
135.
F. M.
White
,
Viscous Fluid Flow
, 3rd ed. (
McGraw-Hill
,
New York
,
2006
).
136.
J. A.
Schetz
and
R. D. W.
Bowersox
,
Boundary Layer Analysis
, AIAA Education Series, 2nd ed. (
American Institute of Aeronautics and Astronautics
,
2011
), Vol.
31
, pp.
257
260
.
137.
P. J.
Pritchard
and
J. W.
Mitchell
,
Fox and McDonald's Introduction to Fluid Mechanics
, 9th ed. (
Wiley
,
Hoboken, NJ
,
2015
).
138.
G. E. A.
Meier
,
K. R.
Sreenivasan
, and
H.-J.
Heinemann
, “
IUTAM symposium on one hundred years of boundary layer research
,” in
Proceedings of the IUTAM Symposium held at DLR-Göttingen
, Germany, 12–14 August
2004
.
139.
E.
Eyo
,
N.
Ogbonna
, and
M.
Ekpenyong
, “
Comparison of the exact and approximate values of certain parameters in laminar boundary layer flow using some velocity profiles
,”
J. Math. Res.
4
,
17
29
(
2012
).
140.
H. Y.
Hafeez
and
C. E.
Ndikilar
, “
Boundary layer equations in fluid dynamics
,” in
Applications of Heat, Mass and Fluid Boundary Layers
(Elsevier,
2020
), pp.
67
94
.
141.
J.
Majdalani
and
L.-J.
Xuan
, “
On the Kármán momentum-integral approach and the Pohlhausen paradox
,”
Phys. Fluids
32
(
12
),
123605
(
2020
).
142.
Z.
Zhaoshun
,
C.
Guixiang
, and
X.
Chunxiao
, “
Modern turbulence and new challenges
,”
Acta Mech. Sin.
18
(
4
),
309
327
(
2002
).
143.
G.
Seifert
, “
The physics of explosive chemistry
,”
Nat. Phys.
4
,
12
13
(
2008
).
144.
M.
Moseler
and
U.
Landman
, “
Formation, stability, and breakup of nanojets
,”
Science
289
,
1165
(
2000
).
145.
C.
Zhao
,
D. A.
Lockerby
, and
J. E.
Sprittles
, “
Dynamics of liquid nanothreads: Fluctuation-driven instability and rupture
,”
Phys. Rev. Fluids
5
,
044201
(
2020
).
146.
D. M.
Holland
,
M. K.
Borg
,
D. A.
Lockerby
, and
J. M.
Reese
, “
Enhancing nano-scale computational fluid dynamics with molecular pre-simulations: Unsteady problems and design optimisation
,”
Comput. Fluids
115
,
46
53
(
2015
).
147.
H.
Singh
and
R. S.
Myong
, “
Critical review of fluid flow physics at micro- to nano-scale porous media applications in the energy sector
,”
Adv. Mater. Sci. Eng.
2018
,
9565240
.
148.
C. A.
Handley
,
B. D.
Lambourn
,
N. J.
Whitworth
,
H. R.
James
, and
W. J.
Belfield
, “
Understanding the shock and detonation response of high explosives at the continuum and meso scales
,”
Appl. Phys. Rev.
5
,
011303
(
2018
).
149.
A.
Burrows
, “
Supernova explosions in the Universe
,”
Nature
403
,
727
733
(
2000
).
150.
S. E.
Woosley
,
S.
Wunsch
, and
M.
Kuhlen
, “
Carbon ignition in type Ia supernovae: An analytic model
,”
Astrophys. J.
607
(
2
),
921
930
(
2004
).
151.
D.
Newitt
, “
Hydrodynamical theory of detonation and shock waves
,”
Nature
172
,
699
(
1953
).
152.
T.
Creighton
, “
An explosion of sound
,”
Nat. Phys.
2
,
581
582
(
2006
).
153.
E.
Reed
,
M.
Riad Manaa
,
L.
Fried
 et al, “
A transient semimetallic layer in detonating nitromethane
,”
Nat. Phys.
4
,
72
76
(
2008
).
154.
J.
Pasachoff
and
N.
Pasachoff
, “
Appointment at Trinity
,”
Nat. Phys.
1
,
74
75
(
2005
).
155.
A.
Koolivand
and
P.
Dimitrakopoulos
, “
Deformation of an elastic capsule in a microfluidic T-junction: Settling shape and moduli determination
,”
Microfluid. Nanofluid.
21
,
89
(
2017
).
156.
E.
Jambon-Puillet
,
T. J.
Jones
, and
P.
Brun
, “
Deformation and bursting of elastic capsules impacting a rigid wall
,”
Nat. Phys.
16
,
585
589
(
2020
).
157.
V. N.
Gamezo
,
A. M.
Khokhlov
,
E. S.
Oran
,
A. Y.
Chtchelkanova
, and
R. O.
Rosenberg
, “
Thermonuclear supernovae: Simulations of the deflagration stage and their implications
,”
Science
299
,
77
81
(
2003
).
158.
W.
Hillebrandt
and
J. C.
Niemeyer
, “
Type Ia supernova explosion models
,”
Annu. Rev. Astron. Astrophys.
38
,
191
230
(
2000
).
159.
K.
Nomoto
,
K.
Iwamoto
, and
N.
Kishimoto
, “
Type Ia supernovae; their origin and possible applications in cosmology
,”
Science
276
,
1378
1382
(
1997
).
160.
S. E.
Woosley
and
T. A.
Weaver
, “
The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis
,”
Astrophys. J. Suppl.
101
,
181
235
(
1995
).
161.
K.
Nomoto
and
M.
Hashimoto
, “
Pre-supernova evolution of massive stars
,”
Phys. Rep.
163
,
13
36
(
1988
).
162.
S. E.
Woosley
,
R. G.
Eastman
, and
B. P.
Schmidt
, “
Gamma-ray bursts and type Ic supernova SN 1998bw
,”
Astrophys. J.
516
,
788
796
(
1999
).
163.
M.
Chiao
, “
Novel observations
,”
Nat. Phys.
10
,
791
(
2014
).
164.
E. S.
Oran
and
V. N.
Gamezo
, “
Origins of the deflagration-to-detonation transition in gas-phase combustion
,”
Combust. Flame
148
(
1–2
),
4
47
(
2007
).
165.
Q.
Li
,
M.
Kellenberger
, and
G.
Ciccarelli
, “
Geometric influence on the propagation of the quasi-detonations in a stoichiometric H2-O2 mixture
,”
Fuel
269
,
117396
(
2020
).
166.
C.
He
,
J.
Zhang
, and
J. M.
Shreeve
, “
Dense iodine-rich compounds with low detonation pressures as biocidal agents
,”
Chem. Eur. J.
19
(
23
),
7503
7509
(
2013
).
167.
Q.
Yang
,
G.
Yang
,
W.
Zhang
 et al, “
Superior thermostability, good detonation properties, insensitivity, and the effect on the thermal decomposition of ammonium perchlorate for a new solvent-free 3D energetic PbII-MOF
,”
Chem. Eur. J.
23
(
38
),
9149
9155
(
2017
).
168.
F.
Wang
,
G.
Wang
,
H.
Du
,
J.
Zhang
, and
X.
Gong
, “
Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines
,”
J. Phys. Chem. A
115
(
47
),
13858
13864
(
2011
).
169.
Y.
Lu
,
Z.
Zhu
,
W.
Wu
, and
Z.
Liu
, “
Detonation chemistry of a CHNO explosive: Catalytic assembling of carbon nanotubes at low pressure and temperature state
,”
Chem. Commun.
22
,
2740
2741
(
2002
).
170.
V. R.
Sanal Kumar
, “
Thermoviscoelastic characterization of a composite solid propellant using tubular test
,”
AIAA J. Propul. Power
19
(
3
),
397
404
(
2003
).
171.
V. R.
Sanal Kumar
,
M.
Ajay
,
A.
Navin
,
R.
Vigneshwaran
,
B.
Surya
,
B.
Sai Shankaran
,
P. K.
Asher
,
A.
Merrish Aloy
, and
V.
Sankar
, “
Design optimization of a variable thrust nanoscale nozzle-less propulsion system
,” in
AIAA AVIATION Forum
, 2–6 August
2021
.
172.
K.
Deviparameswari
 et al, “
Effects of ground clearance and boundary layer blockage factor on the aerodynamics performance of the hyperloop pod and transonic ground effect aircraft
,” in
AIAA AVIATION Forum
, 2–6 August
2021
.
173.
S.
Balusamy
,
V.
Rajendran
,
A.
Merrish Aloy
,
V.
Sankar
, and
V. R.
Sanal Kumar
, “
In silico and in vitro experiments on chevron nozzles with enhanced momentum thrust using streamtube expansion waves
,” in
AIAA Propulsion & Energy Forum
, 9–11 August
2021
.
174.
B.
Sai Shankaran
,
P. K.
Asher
,
T. S.
Syed Masood
,
B.
Feonsa Antonitta
,
K.
Deviparameswari
, and
V. R.
Sanal Kumar
, “
Silico studies on contour optimization of environmental friendly aerospike nozzle with chevron tip
,” in
AIAA Propulsion & Energy Forum
, 9–11 August
2021
.
175.
A. N.
Lukin
,
V.
Rajendran
,
S.
Balusamy
,
A. K.
Nandhan
,
P. K.
Asher
,
A.
Merrish Aloy
,
T. U.
Krishnan
,
V.
Saravanan
,
A.
Sukumaran
, and
V. R.
Sanal Kumar
, “
Predictive control of flow choking phenomena in multimode propulsion systems through the plasma-acoustic coupling mechanism
,” in
AIAA Propulsion & Energy Forum
, 9–11 August
2021
.
176.
Y. B.
Zel'dovich
, “
On the theory of the propagation of detonations on gaseous system
,”
Zh. Éksp. Teor. Fiz.
10
,
542
568
(
1940
) (in Russian); available at https://ntrs.nasa.gov/citations/19930093969.
177.
J.
von Neumann
, “
Theory of detonation waves
,”
Report No. OSRD-549 (PB 31090)
(
Pergamon Press
,
New York
,
1942
).
178.
W.
Döring
, “
On detonation processes in gases
,”
Ann. Phys.
43
(
6–7
),
421
436
(
1943
) (in German).
179.
A.
Sollier
,
V.
Bouyer
,
P.
Hébert
, and
M.
Doucet
, “
A novel method for the measurement of the von Neumann spike in detonating high explosives
,”
J. Appl. Phys.
119
(
24
),
245902
(
2016
).
180.
M.
Salvadori
,
I. B.
Dunn
,
J.
Sosa
,
S.
Menon
, and
K. A.
Ahmed
, “
Numerical investigation of shock-induced combustion of coal-H2-air mixtures in a unwrapped non-premixed detonation channel
,” in
AIAA Scitech 2020 Forum
,
2020
.
181.
D. L.
Chapman
, “
VI. On the rate of explosion in gases
,”
Philos. Mag.
47
(
284
),
90
104
(
1899
).
182.
E.
Jouguet
, “
Sur la propagation des réactions chimiques dans les gaz
,”
J. Math. Pures Appl.
6
,
347
425
(
1905
) (in French); available at http://sites.mathdoc.fr/JMPA/PDF/JMPA_1906_6_2_A1_0.pdf.
183.
O.
Ugarte
,
S.
Menon
,
W.
Rattigan
,
P.
Winstanley
,
P.
Saxena
,
M.
Akiki
, and
T.
Tarver
, “
Prediction of pressure rise in a gas turbine exhaust duct under flameout scenarios while operating on hydrogen and natural gas blends
,”
J. Eng. Gas Turbines Power
144
,
041005
(
2022
).
184.
D.
Fries
,
D.
Ranjan
, and
S.
Menon
, “
Turbulent mixing and trajectories of jets in a supersonic cross-flow with different injectants
,”
J. Fluid Mech.
911
,
A45
(
2021
).
185.
A.
Ben-Yakar
,
M. G.
Mungal
, and
R. K.
Hanson
, “
Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows
,”
Phys. Fluids
18
(
2
),
026101
(
2006
).
186.
A.
Pizzaia
and
T.
Rossmann
, “
Effect of boundary layer thickness on transverse sonic jet mixing in a supersonic turbulent crossflow
,”
Phys. Fluids
30
(
11
),
115104
(
2018
).
187.
R. A.
Humble
,
F.
Scarano
, and
B. W.
van Oudheusden
, “
Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction
,”
Exp. Fluids
43
,
173
(
2007
).
188.
I. B.
Dunn
,
V.
Malik
,
K. A.
Ahmed
,
M.
Salvadori
, and
S.
Menon
, “
Evidence of carbon driven detonation waves within a rotating detonation engine
,” AIAA 2021-1026,
2021
.
189.
M.
Akiki
and
S.
Menon
, “
A model for hot spot formation in shocked energetic materials
,”
Combust. Flame
162
(
5
),
1759
1771
(
2015
).
190.
M.
Vitali
,
C.
Zuliani
,
F.
Corvaro
,
B.
Marchetti
,
A.
Terenzi
, and
F.
Tallone
, “
Risks and safety of CO2 transport via pipeline: A review of risk analysis and modeling approaches for accidental releases
,”
Energies
14
(
15
),
4601
(
2021
).
191.
S.
Srinivasan
,
R.
Ranjan
, and
S.
Menon
, “
Flame dynamics during combustion instability in a high-pressure, shear-coaxial injector combustor
,”
Flow, Turbul. Combust.
94
(
1
),
237
262
(
2015
).
192.
F.
Génin
and
S.
Menon
, “
Simulation of turbulent mixing behind a strut injector in supersonic flow
,”
AIAA J.
48
(
3
),
526
539
(
2010
).
193.
T.
Poinsot
and
S.
Lelef
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
(
1
),
104
129
(
1992
).
194.
D.
Bodony
, “
Analysis of sponge zones for computational fluid mechanics
,”
J. Comput. Phys.
212
(
2
),
681
702
(
2006
).
195.
A.
Panchal
and
S.
Menon
, “
Sanal-flow choking in rocket motors at non-reacting conditions
,” Document No. POF21-RV-KP2021-04555 Technical Report CCL-TR-2021-10, (Computational Combustion Lab, Aerospace Engineering, Georgia Tech,
2021
).
196.
V.
Rajendran
,
B.
Sai Shankaran
,
A. K.
Nandhan
,
K.
Deviparameswari
,
V.
Sankar
,
V.
Saravanan
, and
V. R.
Sanal Kumar
, “
Diagnostic investigation of streamtube flow choking effects on the aerodynamic performance of transonic aircraft
,” AIAA 2022-1955,
2022
.
197.
V. R.
Sanal Kumar
,
S. K.
Choudhary
,
P. K.
Radhakrishnan
,
R. S.
Bharath
,
N.
Chandrasekaran
,
V.
Sankar
,
A.
Sukumaran
, and
C.
Oommen
, “
A cogent vignette of anticoagulation for reducing the risk of Sanal flow choking during spaceflight
,” in
NASA Human Research Program Investigators Workshop
,
2022
.
198.
V. R.
Sanal Kumar
 et al, “
Flow choking concept in energy and combustion science research: Simulation of shock wave and detonation in PDMS based micro/milli-channel, lab-on-chip device
,” Proposal No. VRS/IISc/ICER/Aero/13/10/2021 (Aerospace Engineering, Indian Institute of Science, Bangalore, India,
2021
).
199.
V. R.
Sanal Kumar
 et al, “
Sanal flow choking and/or streamtube flow choking leads to deflagration to detonation transition
,” Document No. CFN-D-22-00044 (VRS/ICER/IISc, Bangalore, India,
2022
).
200.
V. R.
Sanal Kumar
 et al, “
The physics of streamtube flow choking and science behind environmental explosion and detonation
,”
Report No. SPR/2021/000194
(
A Proposal, Science and Engineering Research Board, Government of India
,
2021
).
You do not currently have access to this content.