Recent studies have shown the fluid of hard right triangles to possess fourfold and quasi-eightfold (octatic) orientational symmetries. However, the standard density-functional theory for two-dimensional anisotropic fluids, based on two-body correlations, and an extension to incorporate three-body correlations fail to describe these symmetries. To explain the origin of octatic symmetry, we postulate strong particle clustering as a crucial ingredient. We use the scaled particle theory to analyze four binary mixtures of hard right triangles and squares, three of them being extreme models for a one-component fluid, where right triangles can exist as monomeric entities together with triangular dimers, square dimers, or square tetramers. Phase diagrams exhibit a rich phenomenology, with demixing and three-phase coexistences. More important, under some circumstances the orientational distribution function of triangles has equally high peaks at relative particle angles 0,π/2, and π, signaling fourfold, tetratic order, but also secondary peaks located at π/4 and 3π/4, a feature of eightfold, octatic order. Also, we extend the binary mixture model to a quaternary mixture consisting of four types of clusters: monomers, triangular and square dimers, and square tetramers. This mixture is analyzed using the scaled particle theory under the restriction of fixed cluster fractions. Apart from the obvious tetratic phase promoted by tetramers, we found that, for certain cluster compositions, the total orientational distribution function of monomers can exhibit quasi-eightfold (octatic) symmetry. The study gives evidence on the importance of clustering to explain the peculiar orientational properties of liquid-crystal phases in some two-dimensional fluids.

1.
K.
Zhao
,
C.
Harrison
,
D.
Huse
,
W. B.
Russel
, and
P. M.
Chaikin
, “
Nematic and almost-tetratic phases of colloidal rectangles
,”
Phys. Rev. E
76
,
040401(R)
(
2007
).
2.
K.
Zhao
,
R.
Bruinsma
, and
T. G.
Mason
, “
Entropic crystal–crystal transitions of Brownian squares
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
2684
(
2011
).
3.
K.
Zhao
,
R.
Bruisma
, and
T. G.
Mason
, “
Local chiral symmetry breaking in triatic liquid crystals
,”
Nat. Commun.
3
,
801
(
2012
).
4.
Z.
Hou
,
Y.
Zong
,
Z.
Sun
,
F.
Ye
,
T. G.
Mason
, and
K.
Zhao
, “
Emergent tetratic order in crowded systems of rotationally asymmetric hard kite particles
,”
Nat. Commun.
11
,
2064
(
2020
).
5.
H.
Schlacken
,
H.-J.
Mogel
, and
P.
Schiler
, “
Orientational transitions of two-dimensional hard rod fluids
,”
Mol. Phys.
93
,
777
(
1998
).
6.
K. W.
Wojciechowski
and
D.
Frenkel
, “
Tetratic phase in the planar hard square system?
,”
Comput. Methods Sci. Technol.
10
,
235
(
2004
).
7.
A.
Donev
,
J.
Burton
,
F. H.
Stilinger
, and
S.
Torquato
, “
Tetratic order in the phase behavior of a hard-rectangle system
,”
Phys. Rev. B
73
,
054109
(
2006
).
8.
A. P.
Gantapara
,
W.
Qi
, and
M.
Dijkstra
, “
A novel chiral phase of achiral hard triangles and an entropy-driven demixing of enantiomers
,”
Soft Matter
11
,
8684
(
2015
).
9.
Y.
Martínez-Ratón
,
E.
Velasco
, and
L.
Mederos
, “
Effect of particle geometry on phase transitions in two-dimensional liquid crystals
,”
J. Chem. Phys.
122
,
064903
(
2005
).
10.
Y.
Martínez-Ratón
,
E.
Velasco
, and
L.
Mederos
, “
Orientational ordering in hard rectangles: The role of three-body correlations
,”
J. Chem. Phys.
125
,
014501
(
2006
).
11.
Y.
Martínez-Ratón
,
A.
Díaz-De Armas
, and
E.
Velasco
, “
Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures
,”
Phys. Rev. E
97
,
052703
(
2018
).
12.
Y.
Martínez-Ratón
and
E.
Velasco
, “
Orientational ordering in a fluid of hard kites: A density-functional-theory study
,”
Phys. Rev. E
102
,
052128
(
2020
).
13.
T.
Geigenfeind
and
D.
de las Heras
, “
Principal component analysis of the excluded area of two-dimensional hard particles
,”
J. Chem. Phys.
150
,
184906
(
2019
).
14.
C.
Avendaño
and
F. A.
Escobedo
, “
Phase behavior of rounded hard-squares
,”
Soft Matter
8
,
4675
(
2012
).
15.
J. A.
Anderson
,
J.
Antonaglia
,
J. A.
Millan
,
M.
Engel
, and
S. C.
Glotzer
, “
Shape and symmetry determine two-dimensional melting transitions of hard regular polygons
,”
Phys. Rev. X
7
,
021001
(
2017
).
16.
J. P.
Ramírez González
and
G.
Cinacchi
, “
Phase behavior of hard circular arcs
,”
Phys. Rev. E
104
,
054604
(
2021
).
17.
E.
van den Pol
,
A. V.
Petukhov
,
D. M. E.
Thies-Weesie
,
D. V.
Byelov
, and
G. J.
Vroege
, “Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles,”
Phys. Rev. Lett.
103
,
258301
(
2009
).
18.
S. D.
Peroukidis
and
A. G.
Vanakaras
, “
Phase diagram of hard board-like colloids from computer simulations
,”
Soft Matter
9
,
7419
(
2013
).
19.
S.
Belli
,
A.
Patti
,
M.
Dijkstra
, and
R.
van Roij
, “
Polydispersity stabilizes biaxial nematic liquid crystals
,”
Phys. Rev. Lett.
107
,
148303
(
2011
).
20.
E. M.
Rafael
,
D.
Corbett
,
A.
Cuetos
, and
A.
Patti
, “
Self-assembly of freely-rotating polydisperse cuboids: Unveiling the boundaries of the biaxial nematic phase
,”
Soft Matter
16
,
5565
(
2020
).
21.
E. M.
Rafael
,
L.
Toni
,
D.
Corbett
,
A.
Cuetos
, and
A.
Patti
, “
Dynamics of uniaxial-to-biaxial nematics switching in suspensions of hard cuboids
,”
Phys. Fluids
33
,
067115
(
2021
).
22.
L.
Walsh
and
N.
Menon
, “
Ordering and dynamics of vibrated hard squares
,”
J. Stat. Mech.
2016
,
083302
.
23.
T.
Müller
,
D.
de las Heras
,
I.
Rehberg
, and
K.
Huang
, “
Ordering in granular-rod monolayers driven far from thermodynamic equilibrium
,”
Phys. Rev. E
91
,
062207
(
2015
).
24.
M.
González-Pinto
,
F.
Borondo
,
Y.
Martínez-Ratón
, and
E.
Velasco
, “
Clustering in vibrated monolayers of granular rods
,”
Soft Matter
13
,
2571
(
2017
).
25.
M.
González-Pinto
,
J.
Renner
,
D.
de las Heras
,
Y.
Martínez-Ratón
, and
E.
Velasco
, “
Defects in vertically vibrated monolayers of cylinders
,”
New J. Phys.
21
,
033002
(
2019
).
26.
R.
Wittmann
,
L. B. G.
Cortes
,
H.
Löwen
, and
D. G. A. L.
Aarts
, “
Particle-resolved topological defects of smectic colloidal liquid crystals in extreme confinement
,”
Nat. Commun.
12
,
623
(
2021
).
27.
P. A.
Monderkamp
,
R.
Wittmann
,
L. B. G.
Cortes
,
D. G. A. L.
Aarts
,
F.
Smallenburg
, and
H.
Löwen
, “
Topology of orientational defects in confined smectic liquid crystals
,”
Phys. Rev. Lett.
127
,
198001
(
2021
).
28.
L.
Mederos
,
E.
Velasco
, and
Y.
Martínez-Ratón
, “
Hard-body models of bulk liquid crystals
,”
J. Phys.: Condens. Matter
26
,
463101
(
2014
).
29.
Y.
Martínez-Ratón
and
E.
Velasco
, “
Failure of standard density functional theory to describe the phase behavior of a fluid of hard right isosceles triangles
,”
Phys. Rev. E
104
,
054132
(
2021
).
30.
E. S.
Harper
,
G.
van Anders
, and
S. C.
Glotzer
, “
The entropic bond in colloidal crystals
,”
PNAS
116
,
16703
(
2019
).
31.
M.
Chiappini
,
A.
Patti
, and
M.
Dijkstra
, “
Helicoidal dynamics of biaxial curved rods in twist-bend nematic phases unveiled by unsupervised machine learning techniques
,”
Phys. Rev. E
102
,
040601(R)
(
2020
).
32.
A.
Patti
and
A.
Cuetos
, “
Dynamics of colloidal cubes and cuboids in cylindrical nanopores
,”
Phys. Fluids
33
,
097103
(
2021
).
33.
Y.
Martínez-Ratón
,
E.
Velasco
, and
L.
Mederos
, “
Demixing behavior in two-dimensional mixtures of anisotropic hard bodies
,”
Phys. Rev. E
72
,
031703
(
2005
).
34.
P.
Bolhuis
and
D.
Frenkel
, “
Tracing the phase boundaries of hard spherocylinders
,”
J. Chem. Phys.
106
,
666
(
1997
).
35.
B. P.
Prajwal
and
F. A.
Escobedo
, “
Bridging hexatic and tetratic phases in binary mixtures through near critical point fluctuations
,”
Phys. Rev. Mater.
5
,
024003
(
2021
).
You do not currently have access to this content.