An experimental study to investigate the effect of jet pulsations on the wall jet development in the uphill region of an obliquely inclined round water jet has been performed using particle image velocimetry technique. The study has been performed at a constant nozzle to target wall distance, L/D = 4 (D is the diameter of the nozzle) by varying the jet impingement angle θ(=60o,45o,and30o), Reynolds numbers (ReD = 1900 and 3280; based on nozzle diameter and average nozzle exit velocity Uavg), and Strouhal number (0 ≤ St ≤ 0.9; St=fDUavg, where f is the frequency of external pulsation). It is observed that the pulsations have no significant effect on the jet in the free jet region when the target plate is kept at a distance less than the potential core length (the potential core extends up to 4D–6D from the nozzle exit toward the impinging plate), and the jet impingement region extends up to 1D from the plate. The location of the stagnation point is observed to depend on all three parameters: the jet pulsation, the Reynolds number, and the jet impingement angle. An increase in Reynolds number creates an adverse pressure gradient toward the downstream direction in the uphill region, resulting in an intrusion of ambient fluid toward the wall jet. The distance between the geometric center and the stagnation point is observed to be minimum for St = 0.44 at both the Reynolds numbers. The wall jet that develops in the uphill region exhibits a maximum velocity decay rate and a jet half width growth rate corresponding to St = 0.44. These parameters are also observed to increase with the increase in the Reynolds number and decrease in the jet impingement angle. The velocity fields reconstructed using proper orthogonal decomposition reveal the dominant modes in the upstream location for St = 0.44 than the other pulsations. Furthermore, we observed that the jet after impingement deviates entirely in the downhill region for θ=30o irrespective of the jet pulsation, suggesting a non-dependence of the critical angle of inclination on jet pulsations for L/D = 4.

1.
Abishek
,
S.
, and
Narayanaswamy
,
R.
, “
Low frequency pulsating jet impingement boiling and single phase heat transfer
,”
Int. J. Heat Mass Transfer
159
,
120052
(
2020
).
2.
Babic
,
D. M.
,
Murray
,
D. B.
, and
Torrance
,
A. A.
, “
Mist jet cooling of grinding processes
,”
Int. J. Mach. Tools Manuf.
45
,
1171
1177
(
2005
).
3.
Baghel
,
K.
,
Sridharan
,
A.
, and
Murallidharan
,
J. S.
, “
Heat transfer characteristics of free surface water jet impingement on a curved surface
,”
Int. J. Heat Mass Transfer
164
,
120487
(
2021a
).
4.
Baghel
,
K.
,
Sridharan
,
A.
, and
Murallidharan
,
J. S.
, “
Inclined free-surface liquid jet impingement on semi-cylindrical convex curved and flat surfaces: Heat transfer characteristics
,”
Int. Commun. Heat Mass Transfer
121
,
105116
(
2021b
).
5.
Bakke
,
P.
, “
An experimental investigation of a wall jet
,”
J. Fluid Mech.
2
,
467
472
(
1957
).
6.
Baramade
,
A.
,
Mishra
,
A.
, and
Agrawal
,
A.
, “
Particle image velocimetry based measurements of an axisymmetric turbulent jet impinging on a concave surface
,”
J. Flow Vis. Image Proc.
26
,
253
278
(
2019
).
7.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C.
, “
The effect of inclination on the heat transfer between a flat surface and an impinging two- dimensional air jet
,”
Int. J. Heat Fluid Flow
21
,
156
163
(
2000
).
8.
Beltaos
,
S.
, “
Oblique impingement of circular turbulent jets
,”
J. Hydraul. Res.
14
(
1
),
17
36
(
1976a
).
9.
Beltaos
,
S.
, “
Oblique impingement of plane turbulent jets
,”
J. Hydraul. Div.
102
,
1177
1192
(
1976b
).
10.
Bremhorst
,
K.
, and
Hollis
,
P. G.
, “
Velocity field of an axisymmetric pulsed, subsonic air jet
,”
AIAA J.
28
,
2043
2049
(
1990
).
11.
Chaudhari
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
, “
Heat transfer characteristics of synthetic jet impingement cooling
,”
Int. J. Heat Mass Transfer
53
(
5–6
),
1057
1069
(
2010
).
12.
Cornaro
,
C.
,
Fleischer
,
A. S.
, and
Goldstein
,
R. J.
, “
Flow visualization of a round jet impinging on cylindrical surfaces
,”
Exp. Therm. Fluid Sci.
20
(
2
),
66
78
(
1999
).
13.
Farrington
,
R. B.
, and
Scott
,
D. C.
, “
Infrared imaging of large-amplitude, low frequency disturbances on a planar jet
,”
AIAA J.
32
,
317
323
(
1994
).
14.
Fox
,
M.
,
Kurosaka
,
M.
,
Hedges
,
L.
, and
Hirano
,
K.
, “
The influence of vortical structures on the thermal fields of jets
,”
J. Fluid Mech.
255
,
447
472
(
1993
).
15.
Glauert
,
M. B.
, “
The wall jet
,”
J. Fluid Mech.
1
,
625
643
(
1956
).
16.
Goldstein
,
R. J.
, and
Franchett
,
M. E.
, “
Heat transfer from a flat surface to an oblique impinging jet
,”
J. Heat Transfer
110
,
84
90
(
1988
).
17.
Grosshans
,
H.
,
Szasz
,
R. Z.
, and
Funchs
,
L.
, “
Enhanced liquid gas mixing due to pulsating injection
,”
Comput. Fluid
107
,
196
204
(
2015
).
18.
Han
,
B.
, and
Goldstein
,
R.
, “
Jet-impingement heat transfer in gas turbine systems
,”
Ann. New York Acad. Sci.
934
,
147
161
(
2006
).
19.
Han
,
B.
, and
Goldstein
,
R. J.
, “
Instantaneous energy separation in a free jet. Part I. Flow measurement and visualization
,”
Int. J. Heat Mass Transfer
46
,
3975
3981
(
2003
).
20.
Hofmann
,
H. M.
,
Movileanu
,
D. L.
,
Kind
,
M.
, and
Martin
,
H.
, “
Influence of a pulsation on heat transfer and flow structure in submerged impinging jets
,”
Int. J. Heat Mass Transfer
50
(
17
),
3638
3648
(
2007
).
21.
Hollworth
,
B. R.
, and
Durbin
,
M.
, “
Impingement cooling of electronics
,”
J. Heat Transfer
114
,
607
613
(
1992
).
22.
Hsu
,
C. M.
,
Jhan
,
W. C.
, and
Chang
,
Y. Y.
, “
Flow and heat transfer characteristics of a pulsed jet impinging on a flat plate
,”
Heat Mass Transfer
56
,
143
160
(
2020
).
23.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
A.
, and
Button
,
B. L.
, “
A review of heat transfer data for single circular jet impingement
,”
Int. J. Heat Fluid Flow
13
,
106
115
(
1992
).
24.
Kate
,
R. P.
,
Das
,
P. K.
, and
Chakraborty
,
S.
, “
Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface
,”
J. Fluid Mech.
573
,
247
263
(
2007
).
25.
Kim
,
Y. H.
,
Cierpka
,
C.
, and
Werely
,
S.
, “
Flow field around a vibrating cantilever: Coherent structure aduction by continuous wavelet transform and proper orthogonal decomposition
,”
J. Fluid Mech.
669
,
584
604
(
2011
).
26.
Katti
,
V.
, and
Prabhu
,
S. V.
, “
Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle
,”
Int. J. Heat Mass Transfer
51
(
17
),
4480
4495
(
2008
).
27.
Livingood
,
J. N.
, and
Hrycak
,
P.
, “
Impingement heat transfer from turbulent air jets to flat plates: A literature survey
,”
Report No. NASA TM X-2778
(
NASA
,
1973
).
28.
Lytle
,
D.
, and
Webb
,
B.
, “
Air jet impingement heat transfer at low nozzle-plate spacings
,”
Int. J. Heat Mass Transfer
37
,
1687
1697
(
1994
).
29.
Mishra
,
A.
,
Yadav
,
H.
,
Djenidi
,
L.
, and
Agrawal
,
A.
, “
Experimental study of flow characteristics of an oblique impinging jet
,”
Exp. Fluids
61
,
90
(
2020
).
30.
Mishra
,
A.
,
Djenidi
,
L.
, and
Agrawal
,
A.
, “
Dynamics of wall jet flow under external pulsation
,”
Phys. Fluids
33
,
095103
(
2021a
).
31.
Mishra
,
A.
,
Yadav
,
H.
,
Djenidi
,
L.
, and
Agrawal
,
A.
, “
Effect of pulsations on the wall jet flow in the near region of and impinging jet
,”
Exp. Fluids
62
,
157
(
2021b
).
32.
Narayanan
,
V.
,
Seyed-Yagoobi
,
J.
, and
Page
,
R.
, “
An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow
,”
Int. J. Heat Mass Transfer
47
,
1827
1845
(
2004
).
33.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
, “
Jet impingement heat transfer—Part I: Mean and root mean square heat transfer and velocity distributions
,”
Int. J. Heat Mass Transfer
17
,
3291
3301
(
2007
).
34.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
, “
Fluctuating fluid flow and heat transfer of an obliquely impinging air jet
,”
Int. J. Heat Mass Transfer
51
,
6169
6179
(
2008
).
35.
Özdemir
,
I. B.
, and
Whitelaw
,
J. H.
, “
Impingement of an axisymmetric jet on unheated and heated flat plates
,”
J. Fluid Mech.
240
,
503
532
(
1992
).
36.
Popiel
,
C. O.
, and
Trass
,
O.
, “
Visualization of a free and impinging round jet
,”
Exp. Therm. Fluid Sci.
4
,
253
264
(
1991
).
37.
Poreh
,
M.
,
Tsuei
,
Y. G.
, and
Cermark
,
J. E.
, “
Investigation of a turbulent radial wall jet
,”
ASME. J. Appl. Mech.
34
,
457
463
(
1967
).
38.
Rabbi
,
K. M.
,
Carter
,
J.
, and
Putnam
,
S. A.
, “
Understanding pulsed jet impingement cooling by instantaneous heat flux matching at solid-liquid interfaces
,”
Phys. Rev. Fluids
5
(
9
),
094003
(
2020
).
39.
Rajaratnam
,
N.
, and
Mazurek
,
K.
, “
Impingement of circular turbulent jets on rough boundaries
,”
J. Hydraulic Res.
43
,
689
695
(
2005
).
40.
Rakhsha
,
S.
,
Zargarabadi
,
M. R.
, and
Saedodin
,
S.
, “
Experimental and numerical study of flow and heat transfer from a pulsed jet impinging on a pinned surface
,”
Exp. Heat Transfer
34
(
4
),
376
391
(
2021
).
41.
Schauer
,
J. J.
, and
Eustis
,
R. E.
, “
The flow and heat transfer characteristics of plane turbulent impinging jets
,”
Technical Report No. 3
(
Stanford University
,
1963
).
42.
Sparrow
,
E. M.
, and
Lovell
,
B. J.
, “
Heat transfer characteristics of an obliquely impinging circular jet
,”
J. Heat Transfer
102
,
202
209
(
1980
).
43.
Stevens
,
J.
, and
Webb
,
B. W.
, “
The effect of inclination on local heat transfer under an axisymmetric, free liquid jet
,”
Int. J. Heat Mass Transfer
34
(
4–5
),
1227
1236
(
1991
).
44.
Sooraj
,
P.
,
Ramagya
,
M. S.
,
Khan
,
M. H.
, and
Agrawal
,
A.
, “
Effect of super-hydrophobicity on the flow past a circular cylinder in various flow regimes
,”
J. Fluid Mech.
897
,
A21
(
2020
).
45.
Tang
,
C.
,
Zhang
,
J. Z.
,
Lyu
,
Y. W.
, and
Tan
,
X. M.
, “
Convective heat transfer on a flat target surface impinged by pulsating jet with an additional transmission chamber
,”
Heat Mass Transfer
56
,
183
205
(
2020
).
46.
Wang
,
X. K.
,
Niu
,
G. P.
,
Yuan
,
S. Q.
,
Zheng
,
J. X.
, and
Tan
,
S. K.
, “
Experimental investigation on the mean flow field and impact force of a semi-confined round impinging jet
,”
Fluid Dyn. Res.
47
,
025501
(
2015
).
47.
Waschke
,
G.
, “
Uber die luftung mittels isothermer turbulente radialer deckensrrahlen
,” Ph.D. dissertation (
RWTH Aachen
,
Germany
,
1974
).
48.
Yadav
,
H.
,
Agrawal
,
A.
, and
Srivastava
,
A.
, “
Mixing and entrainment characteristics of a pulse jet
,”
Int. J. Heat Fluid Flow
61
,
749
761
(
2016
).
49.
Yadav
,
H.
, and
Agrawal
,
A.
, “
Self-similar behavior of turbulent impinging jet based upon outer scaling and dynamics of secondary peak in heat transfer
,”
Int. J. Heat Fluid Flow
72
,
123
142
(
2018
).
50.
Zargarabadi
,
M. R.
,
Rezaei
,
E.
, and
Yousefi-Lafouraki
,
B.
, “
Numerical analysis of turbulent flow and heat transfer of sinusoidal pulsed jet impinging on an asymmetrical concave surface
,”
Appl. Therm. Eng.
128
,
578
585
(
2018
).
51.
Zhang
,
F.
, and
Wang
,
S.
, “
Numerical analysis for jet impingement and heat transfer law of self-excited pulsed nozzle
,”
ISIJ Int.
60
(
11
),
2485
2492
(
2020
).
52.
Zhang
,
X.
,
Yarusevych
,
S.
, and
Peterson
,
S. D.
, “
Experimental investigation of flow development and coherent structures in normal and oblique impinging slot jets
,”
Exp. Fluids
60
,
11
(
2019
).
You do not currently have access to this content.