We analytically solve the problem of the evolution of small-amplitude waves in a uniform flow of a viscous fluid down an inclined plane. The flow is described in a hydraulic approximation. The flow is supposed to be convectively unstable, and the waves arise as a result of an instantaneous external point disturbance. The solution is presented as a Fourier integral to which the steepest descent method is applied twice. The asymptotics of the growing waves is found analytically as a function of two spatial coordinates and time. We show that the region of growing perturbations is a segment of a circle, that its linear dimensions grow linearly with time, and that it is defined by the characteristics of a system of Saint-Venant differential equations.

1.
S.
Alekseenko
,
V.
Nakoryakov
, and
B.
Pokusaev
,
Wave Flow in Liquid Films
(
Begell House
,
New York
,
1994
).
2.
H.-C.
Chang
and
E.
Demekhin
,
Complex Wave Dynamics on Thin Films
, edited by
D.
Möbius
and
R.
Miller
(
Elsevier
,
Amsterdam
,
2002
).
3.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M.
Velarde
,
Falling Liquid Films
(
Springer
,
London
,
2012
).
4.
R.
Craster
and
O.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
1198
(
2009
).
5.
S.
Grigorian
, “
A new law of friction and mechanism for large-scale slag heaps and landslides
,”
Sov. Phys. Dokl.
24
,
110
111
(
1979
).
6.
M.
Barbolini
,
U.
Gruber
,
C.
Keylock
,
M.
Naaim
, and
F.
Savi
, “
Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites
,”
Cold Reg. Sci. Technol.
31
,
133
149
(
2000
).
7.
M.
Christen
,
J.
Kowalski
, and
P.
Bartelt
, “
RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain
,”
Cold Reg. Sci. Technol.
63
,
1
14
(
2010
).
8.
M.
Eglit
and
K.
Demidov
, “
Mathematical modeling of snow entrainment in avalanche motion
,”
Cold Reg. Sci. Technol.
43
,
10
23
(
2005
).
9.
M.
Naaim
,
F.
Naaim-Bouvet
,
T.
Faug
, and
A.
Bouchet
, “
Dense snow avalanche modeling: Flow, erosion, deposition and obstacle effects
,”
Cold Reg. Sci. Technol.
39
,
193
204
(
2004
).
10.
M.
Rauter
,
A.
Kofler
,
A.
Huber
, and
W.
Fellin
, “
faSavageHutterFOAM 1.0: Depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM
,”
Geosci. Model Dev.
11
,
2923
2939
(
2018
).
11.
V.
Vedernikov
, “
Conditions at the front of a translation wave disturbing a steady motion of a real fluid
,”
C. R. Dokl. Akad. Nauk SSSR
48
,
239
242
(
1945
).
12.
P.
Coussot
, “
Steady, laminar flow of concentrated mud suspensions in open channel
,”
J. Hydraul. Res.
32
,
535
559
(
1994
).
13.
A.
Craya
, “
The criterion for the possibility of roll wave formation
,”
Proceedings of the Gravity Wave Symposium
(
National Bureau of Standards
,
1951
).
14.
C. D.
Cristo
and
V.
Vacca
, “
On the convective nature of roll waves instability
,”
J. Appl. Math.
2005
,
259
271
.
15.
R.
Dressler
and
F.
Pohle
, “
Resistance effects on hydraulic instability
,”
Commun. Pure Appl. Math.
6
,
93
96
(
1953
).
16.
H.
Jeffreys
, “
The flow of water in an inclined channel of rectangular section
,”
Philos. Mag.
49
,
793
807
(
1925
).
17.
K.
Liu
and
C.
Mei
, “
Roll waves on a layer of a muddy fluid flowing down a gentle slope—A Bingham model
,”
Phys. Fluids
6
,
2577
2590
(
1994
).
18.
C.
Ng
and
C.
Mei
, “
Roll waves on a shallow layer of mud modelled as a power-law fluid
,”
J. Fluid Mech.
263
,
151
183
(
1994
).
19.
O.
Thual
,
L.-R.
Plumerault
, and
D.
Astruc
, “
Linear stability of the 1D Saint-Venant equations and drag parameterizations
,”
J. Hydraul. Res.
48
,
348
353
(
2010
).
20.
J.
Trowbridge
, “
Instability of concentrated free surface flows
,”
J. Geophys. Res.
92
(
C9
),
9523
9530
, (
1987
).
21.
B.
Zanuttigh
and
A.
Lamberti
, “
Instability and surge development in debris flows
,”
Rev. Geophys.
45
,
RG3006
, (
2007
).
22.
T.
Ishihara
,
Y.
Iwagaki
, and
Y.
Iwasa
, “
Theory of the roll-wave trains in laminar water flow on steep slope surface—Studies on the thin sheet flow
,”
Trans. Jpn. Soc. Civ. Eng
1954
,
46
57
(in Japanese).
23.
T.
Benjamin
, “
Wave formation in laminar flow down an inclined plane
,”
J. Fluid Mech.
2
,
554
574
(
1957
).
24.
C.-S.
Yih
, “
Stability of liquid flow down an inclined plane
,”
Phys. Fluids
6
(
3
),
321
334
(
1963
).
25.
M.
Allouche
,
S.
Millet
,
V.
Botton
,
D.
Henry
,
H. B.
Hadid
, and
F.
Rousset
, “
Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids
,”
Phys. Rev. E
92
,
063010
(
2015
).
26.
J.
Zayko
and
M.
Eglit
, “
Stability of downslope flows to two-dimensional perturbations
,”
Phys. Fluids
31
(
8
),
086601
(
2019
).
27.
E.
Mogilevskiy
, “
Stability of a non-Newtonian falling film due to three-dimensional disturbances
,”
Phys. Fluids
32
,
073101
(
2020
).
28.
J.
Liu
,
J. B.
Schneider
, and
J. P.
Gollub
, “
Three-dimensional instabilities of film flows
,”
Phys. Fluids
7
,
55
67
(
1995
).
29.
P.
Adomeit
and
U.
Renz
, “
Hydrodynamics of three-dimensional waves in laminar falling films
,”
Int. J. Multiphase Flow
26
,
1183
1208
(
2000
).
30.
S.
Alekseenko
,
V.
Antipin
,
V.
Guzanov
,
S.
Kharlamov
, and
D.
Markovich
, “
Three-dimensional solitary waves on falling liquid film at low Reynolds numbers
,”
Phys. Fluids
17
,
121704
(
2005
).
31.
E.
Demekhin
,
E.
Kalaidin
,
S.
Kalliadasis
, and
S.
Vlaskin
, “
Three-dimensional localized coherent structures of surface turbulence. I. Scenarios of two-dimensional-three-dimensional transition
,”
Phys. Fluids
19
,
114103
(
2007
).
32.
E.
Demekhin
,
E.
Kalaidin
,
S.
Kalliadasis
, and
S.
Vlaskin
, “
Three-dimensional localized coherent structures of surface turbulence. II. Λ solitons
,”
Phys. Fluids
19
,
114104
(
2007
).
33.
E.
Demekhin
,
E.
Kalaidin
, and
A.
Selin
, “
Three-dimensional localized coherent structures of surface turbulence. III. Experiment and model validation
,”
Phys. Fluids
22
,
092103
(
2010
).
34.
S.
Aktershev
and
S.
Alekseenko
, “
Simulation of three-dimension waves in a liquid film
,”
J. Appl. Mech. Tech. Phys.
55
(
6
),
979
989
(
2014
).
35.
T.
Benjamin
, “
The development of three-dimensional disturbances in an unstable film of liquid flowing down an inclined plane
,”
J. Fluid Mech.
10
(
3
),
401
419
(
1961
).
36.
L.
Brevdo
,
P.
Laure
,
F.
Dias
, and
T.
Bridges
, “
Linear pulse structure and signalling in a film flow on an inclined plane
,”
J. Fluid Mech.
396
,
37
71
(
1999
).
37.
E. A.
Demekhin
,
S. M.
Shapar
, and
E.
Kalaydin
, “
Three-dimensional non-stationary processes in a vertically falling film of a viscous liquid
,”
Thermophys. Aeromech.
15
(
3
),
393
400
(
2008
).
38.
E. A.
Demekhin
,
E. A.
Selin
, and
E. M.
Shapar
, “
Investigation of instability in vertical liquid films as an initial value problem
,”
Fluid Dyn.
44
(
3
),
372
381
(
2009
).
39.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics: Partial Differential Equations
(
John Wiley
,
New York/London/Sydney
,
1962
), Vol.
II
(in English).
40.
V.
Vedeneev
,
Mathematical Stability Theory of Plane-Parallel Flows and Development of Turbulence
(
Intellect Publisher
,
Dolgoprudny
,
2016
) (in Russian).
41.
N.
Kochin
,
I.
Kibel
, and
N.
Rose
,
Theoretical Hydrodynamics. Part 1
(
Fizmatgiz
,
Moscow
,
1963
) (in Russian).
You do not currently have access to this content.