In this article, we present a deep learning-based reduced order model (DL-ROM) for predicting the fluid forces and unsteady vortex shedding patterns. We consider the flow past a sphere to examine the accuracy of our DL-ROM predictions. The proposed DL-ROM methodology relies on a three-dimensional convolutional recurrent autoencoder network (3D CRAN) to extract the low-dimensional flow features from the full-order snapshots in an unsupervised manner. The low-dimensional features are evolved in time using a long short-term memory-based recurrent neural network and reconstructed back to the full-order as flow voxels. These flow voxels are introduced as static and uniform query probes in the point cloud domain to reduce the unstructured mesh complexity while providing convenience in the 3D CRAN training. We introduce a novel procedure to recover the interface description and the instantaneous force quantities from these 3D flow voxels. To evaluate the 3D flow reconstruction and inference, the 3D CRAN methodology is first applied to an external flow past a static sphere at the single Reynolds number of Re = 300. We provide an assessment of the computing requirements in terms of the memory usage, training, and testing cost of the 3D CRAN framework. Subsequently, variable Re-based flow information is infused in one 3D CRAN to learn a symmetry-breaking flow regime (280 Re 460) for the flow past a sphere. Effects of transfer learning are analyzed for training this complex 3D flow regime on a relatively smaller time series dataset. The 3D CRAN framework learns the flow regime nearly 20 times faster than the parallel full-order model and predicts this flow regime in time with a reasonable accuracy. Based on the predicted flow fields, the network demonstrates an R2 accuracy of 98.58% for the drag and 76.43% for the lift over the sphere in this flow regime. The proposed framework aligns with the development of a digital twin for 3D unsteady flow field and instantaneous force predictions with variable Re-based effects.

1.
See https://docs.scipy.org/doc/scipy-1.4.1/scipy-ref-1.4.1.pdf for Scipy reference guide, release 1.4.1;
2019
.
2.
S. E.
Ahmed
,
S.
Pawar
,
O.
San
, and
A.
Rasheed
, “
Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning
,” AIAA Paper No. 2020-2946,
2020
.
3.
S. S.
An
,
T.
Kim
, and
D. L.
James
, “
Optimizing cubature for efficient integration of subspace deformations
,”
ACM Trans. Graph.
27
,
165
(
2008
).
4.
P.
Baldi
and
K.
Hornik
, “
Neural networks and principal component analysis: Learning from examples without local minima
,”
Neural Networks
2
(
1
),
53
58
(
1989
).
5.
S.
Bhatnagar
,
Y.
Afshar
,
S.
Pan
,
K.
Duraisamy
, and
S.
Kaushik
, “
Prediction of aerodynamic flow fields using convolutional neural networks
,”
Comput. Mech.
64
,
525
545
(
2019
).
6.
M. M.
Bronstein
,
J.
Bruna
,
T.
Cohen
, and
P.
Veličković
, “
Geometric deep learning: Grids, groups, graphs, geodesics, and gauges
,” arXiv:2104.13478 (
2021
).
7.
M. E.
Brown
,
D. J.
Lary
,
A.
Vrieling
,
D.
Stathakis
, and
H.
Mussa
, “
Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS
,”
Int. J. Remote Sens.
29
(
24
),
7141
7158
(
2008
).
8.
S. R.
Bukka
, “
Data-driven computing for the stability analysis and prediction of fluid-structure interaction
,” Ph.D. thesis (National University of Singapore,
2019
).
9.
S. R.
Bukka
,
R.
Gupta
,
A. R.
Magee
, and
R. K.
Jaiman
, “
Assessment of unsteady flow predictions using hybrid deep learning based reduced-order models
,”
Phys. Fluids
33
(
1
),
013601
(
2021
).
10.
S. R.
Bukka
,
A. R.
Magee
, and
R. K.
Jaiman
, “
Deep convolutional recurrent autoencoders for flow field prediction
,” in Proceedings of the
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2020
), Vol.
84409
, p.
V008T08A005
.
11.
S.
Chaturantabut
and
D. C.
Sorensen
, “
Discrete empirical interpolation for nonlinear model reduction
,”
SIAM J. Sci. Comput.
32
,
2737
2764
(
2010
).
12.
H.
Chen
,
Y.
Zhang
,
M. K.
Kalra
,
F.
Lin
,
Y.
Chen
,
P.
Liao
,
J.
Zhou
, and
G.
Wang
, “
Low-dose CT with a residual encoder-decoder convolutional neural network
,”
IEEE Trans. Med. Imaging
36
(
12
),
2524
2535
(
2017
).
13.
T.
Chen
and
H.
Chen
, “
Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
,”
IEEE Trans. Neural Networks
6
(
4
),
911
917
(
1995
).
14.
A.
Chizfahm
and
R.
Jaiman
, “
Data-driven stability analysis and near-wake jet control for the vortex-induced vibration of a sphere
,”
Phys. Fluids
33
(
4
),
044104
(
2021
).
15.
G.
Cybenko
, “
Approximation by superpositions of a sigmoidal function
,”
Math. Control Signals Syst.
2
(
4
),
303
314
(
1989
).
16.
G.
Dong
,
G.
Liao
,
H.
Liu
, and
G.
Kuang
, “
A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images
,”
IEEE Geosci. Remote Sens. Mag.
6
(
3
),
44
68
(
2018
).
17.
M.
Eichinger
,
A.
Heinlein
, and
A.
Klawonn
, “
Stationary flow predictions using convolutional neural networks
,”
Numerical Mathematics and Advanced Applications ENUMATH 2019
(
Springer
,
2021
), pp.
541
549
.
18.
N. B.
Erichson
,
M.
Muehlebach
, and
M. W.
Mahoney
, “
Physics-informed autoencoders for Lyapunov-stable fluid flow prediction
,” arXiv:1905.10866 (
2019
).
19.
S.
Fresca
and
A.
Manzoni
, “
Real-time simulation of parameter-dependent fluid flows through deep learning-based reduced order models
,” arXiv:2106.05722 (
2021
).
20.
S.
Grimberg
,
C.
Farhat
, and
N.
Youkilis
, “
On the stability of projection-based model order reduction for convection-dominated laminar and turbulent flows
,”
J. Comput. Phys.
419
,
109681
(
2020
).
21.
X.
Guo
,
W.
Li
, and
F.
Iorio
, “
Convolutional neural networks for steady flow approximation
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Association for Computing Machinery,
2016
), pp.
481
490
.
22.
R.
Gupta
and
R.
Jaiman
, “
A hybrid partitioned deep learning methodology for moving interface and fluid–structure interaction
,”
Comput. Fluids
233
,
105239
(
2022
).
23.
P. S.
Gurugubelli
and
R. K.
Jaiman
, “
Self-induced flapping dynamics of a flexible inverted foil in a uniform flow
,”
J. Fluid Mech.
781
,
657
694
(
2015
).
24.
Y.
Ham
,
J.
Kim
, and
J.
Luo
, “
Deep learning for multi-year ENSO forecasts
,”
Nature
573
(
7775
),
568
572
(
2019
).
25.
R.
Han
,
Y.
Wang
,
Y.
Zhang
, and
G.
Chen
, “
A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network
,”
Phys. Fluids
31
(
12
),
127101
(
2019
).
26.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
(
8
),
1735
1780
(
1997
).
27.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
,”
Neural Networks
3
(
5
),
551
560
(
1990
).
28.
S.
Jaderberg
,
M.
Simonyan
,
A.
Zisserman
, and
K.
Kavukcuoglu
, “
Spatial transformer networks
,” in Proceedings of the
Advances in Neural Information Processing Systems 28 (NIPS)
(
2015
).
29.
R.
Jaiman
,
P.
Geubelle
,
E.
Loth
, and
X.
Jiao
, “
Transient fluid–structure interaction with non-matching spatial and temporal discretizations
,”
Comput. Fluids
50
(
1
),
120
135
(
2011
).
30.
R. K.
Jaiman
,
M. Z.
Guan
, and
T. P.
Miyanawala
, “
Partitioned iterative and dynamic subgrid-scale methods for freely vibrating square-section structures at subcritical Reynolds number
,”
Comput. Fluids
133
,
68
89
(
2016
).
31.
R. K.
Jaiman
and
V.
Joshi
,
Computational Mechanics of Fluid-Structure Interaction
(
Springer
,
2022
).
32.
X.
Jin
,
P.
Cheng
,
W.
Chen
, and
H.
Li
, “
Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder
,”
Phys. Fluids
30
(
4
),
047105
(
2018
).
33.
T. A.
Johnson
and
V. C.
Patel
, “
Flow past a sphere up to a Reynolds number of 300
,”
J. Fluid Mech.
378
,
19
70
(
1999
).
34.
V.
Joshi
and
R. K.
Jaiman
, “
A hybrid variational Allen-Cahn/ALE scheme for the coupled analysis of two-phase fluid-structure interaction
,”
Int. J. Numer. Methods Eng.
117
(
4
),
405
429
(
2019
).
35.
I. K.
Deo
and
R.
Jaiman
, “
Learning wave propagation with attention-based convolutional recurrent autoencoder net
,” arXiv:2201.06628 (
2022
).
36.
A.
Karpatne
,
W.
Watkins
,
J.
Read
, and
V.
Kumar
, “
Physics-guided neural networks (PGNN): An application in lake temperature modeling
,” arXiv:1710.11431 (
2017
).
37.
S. R.
Kashyap
and
R. K.
Jaiman
, “
A robust and accurate finite element framework for cavitating flows with fluid-structure interaction
,”
Comput. Math. Appl.
103
,
19
39
(
2021
).
38.
Y.
Kim
,
Y.
Choi
,
D.
Widemann
, and
T.
Zohdi
, “
A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
,”
J. Comput. Phys.
451
,
110841
(
2022
).
39.
D. P.
Kingma
and
J. B.
Adam
, “
A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
40.
K.
Lee
and
K. T.
Carlberg
, “
Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
,”
J. Comput. Phys.
404
,
108973
(
2020
).
41.
S.
Lee
and
D.
You
, “
Data-driven prediction of unsteady flow over a circular cylinder using deep learning
,”
J. Fluid Mech.
879
,
217
254
(
2019
).
42.
Y.
Lee
,
H.
Yang
, and
Z.
Yin
, “
PIV-DCNN: Cascaded deep convolutional neural networks for particle image velocimetry
,”
Exp. Fluids
58
(
12
),
171
(
2017
).
43.
S.
Lunz
,
O.
Öktem
, and
C.
Schönlieb
, “
Adversarial regularizers in inverse problems
,” in
Proceedings of the 32nd Conference on Neural Information Processing Systems (NIPS)
(Curran Associates, Inc.,
2018
), pp.
8507
8516
, https://proceedings.neurips.cc/paper/2018/hash/d903e9608cfbf08910611e4346a0ba44-Abstract.html.
44.
K. O.
Lye
,
S.
Mishra
, and
D.
Ray
, “
Deep learning observables in computational fluid dynamics
,”
J. Comput. Phys.
410
,
109339
(
2020
).
45.
M.
Ma
,
C.
Sun
, and
X.
Chen
, “
Deep coupling autoencoder for fault diagnosis with multimodal sensory data an efficient deep learning
,”
IEEE Trans. Ind. Inf.
14
(
3
),
1137
1145
(
2018
).
46.
T. P.
Miyanawala
and
R. K.
Jaiman
, “
An efficient deep learning technique for the Navier-Stokes equations: Application to unsteady wake flow dynamics
,” arXiv:1710.09099 (
2017
).
47.
T. P.
Miyanawala
and
R. K.
Jaiman
, “
Decomposition of wake dynamics in fluid–structure interaction via low-dimensional models
,”
J. Fluid Mech.
867
,
723
764
(
2019
).
48.
T. P.
Miyanawala
and
R. K.
Jaiman
, “
A hybrid data-driven deep learning technique for fluid-structure interaction
,” in Proceedings of the
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2019
), Vol.
58776
, p.
V002T08A004
.
49.
B.
Moore
, “
Principal component analysis in linear systems: Controllability, observability, and model reduction
,”
IEEE Trans. Autom. Control
26
(
1
),
17
32
(
1981
).
50.
T.
Murata
,
K.
Fukami
, and
K.
Fukagata
, “
Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
,”
J. Fluid Mech.
882
,
A13
(
2020
).
51.
F.
Ogoke
,
K.
Meidani
,
A.
Hashemi
, and
A. B.
Farimani
, “
Graph convolutional neural networks for body force prediction
,” arXiv:2012.02232 (
2020
).
52.
C.
Olah
,
Understanding LSTM Networks
(
iNeuron
,
2015
), http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
53.
S. J.
Pan
and
Q.
Yang
, “
A survey on transfer learning
,”
IEEE Trans. Knowl. Data Eng.
22
(
10
),
1345
1359
(
2010
).
54.
E. J.
Parish
and
K.
Duraisamy
, “
A paradigm for data-driven predictive modeling using field inversion and machine learning
,”
J. Comput. Phys.
305
,
758
774
(
2016
).
55.
D.
Park
,
Y.
Hoshi
, and
C. C.
Kemp
, “
A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder
,”
IEEE Rob. Autom. Lett.
3
(
3
),
1544
1551
(
2018
).
56.
S.
Peitz
and
S.
Klus
, “
Koopman operator-based model reduction for switched-system control of PDEs
,”
Automatica
106
,
184
191
(
2019
).
57.
T.
Pfaff
,
M.
Fortunato
,
A.
Sanchez-Gonzalez
, and
P. W.
Battaglia
, “
Learning mesh-based simulation with graph networks
,” arXiv:2010.03409 (
2020
).
58.
E.
Plaut
, “
From principal subspaces to principal components with linear autoencoders
,” arXiv:1804.10253 (
2018
).
59.
J.
Rabault
,
J.
Kolaas
, and
A.
Jensen
, “
Performing particle image velocimetry using artificial neural networks: A proof-of-concept
,”
Meas. Sci. Technol.
28
(
12
),
125301
(
2017
).
60.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
61.
S. S.
Rangapuram
,
M. W.
Seeger
,
J.
Gasthaus
,
L.
Stella
,
Y.
Wang
, and
T.
Januschowski
, “
Deep state space models for time series forecasting
,”
Adv. Neural Inf. Process. Syst.
31
,
7785
7794
(
2018
), https://papers.nips.cc/paper/2018/hash/5cf68969fb67aa6082363a6d4e6468e2-Abstract.html.
62.
P. J.
Roache
, “
Perspective: A method for uniform reporting of grid refinement studies
,”
J. Fluids Eng.
116
,
405
413
(
1994
).
63.
O.
San
and
R.
Maulik
, “
Machine learning closures for model order reduction of thermal fluids
,”
Appl. Math. Modell.
60
,
681
710
(
2018
).
64.
A.
Sanchez-Gonzalez
,
J.
Godwin
,
T.
Pfaff
,
R.
Ying
,
J.
Leskovec
, and
P.
Battaglia
, “
Learning to simulate complex physics with graph networks
,” in
Proceedings of the International Conference on Machine Learning
(
PMLR
,
2020
), pp.
8459
8468
.
65.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
66.
S. P.
Singh
,
L.
Wang
,
S.
Gupta
,
H.
Goli
,
P.
Padmanabhan
, and
B.
Gulyás
, “
3D deep learning on medical images: A review
,”
Sensors
20
(
18
),
5097
(
2020
).
67.
J. R.
Singler
, “
Balanced POD for model reduction of linear PDE systems: Convergence theory
,”
Numer. Math.
121
(
1
),
127
164
(
2012
).
68.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I. Coherent structures
,”
Q. Appl. Math.
45
(
3
),
561
571
(
1987
).
69.
K.
Taira
,
S. L.
Brunton
,
S.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
(
12
),
4013
4041
(
2017
).
70.
C.
Tan
,
F.
Sun
,
T.
Kong
,
W.
Zhang
,
C.
Yang
, and
C.
Liu
, “
A survey on deep transfer learning
,” in Proceedings of the
International Conference on Artificial Neural Networks
(
Springer
,
2018
), pp.
270
279
.
71.
L.
Torrey
and
J.
Shavlik
, “
Transfer learning
,”
Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques
(
IGI Global
,
2010
), pp.
242
264
.
72.
J.
Wang
,
J.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
(
3
),
034603
(
2017
).
73.
J.
Yu
,
C.
Hong
,
Y.
Rui
, and
D.
Tao
, “
Multitask autoencoder model for recovering human poses
,”
IEEE Trans. Ind. Electron.
65
(
6
),
5060
5068
(
2018
).
74.
Y.
Zhu
,
N.
Zabaras
,
P.
Koutsourelakis
, and
P.
Perdikaris
, “
Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
,”
J. Comput. Phys.
394
,
56
81
(
2019
).
You do not currently have access to this content.