An investigation of the mode transformation and interaction underlying the behavior of vortex-induced vibration (VIV) of a flow past a circular cylinder elastically mounted on a linear spring is conducted using a high-fidelity full-order model (FOM) based on computational fluid dynamics (CFD), a reduced-order model (ROM), and a dynamic mode decomposition (DMD) of the velocity. A reduced-order model for the fluid dynamics is obtained using the eigensystem realization algorithm (ERA), which is subsequently coupled to a linear structural equation to provide a state space model for the coupled VIV system, in order to provide a simplified computationally inexpensive mathematical representation of the system. This methodology is used to study the dynamics of laminar flows past an elastically mounted circular cylinder with Reynolds number Re ranging from 20 to 180, inclusive. The results of the simulations conducted using FOM/CFD and ROM/ERA, in conjunction with the power spectral analysis and DMD, are used to identify the characteristic natural frequencies and the growth/decay of various modes (including the complex interactions between the myriad wake modes and the structural mode) of the VIV system as a function of the Reynolds number and the reduced natural frequency Fs (or, equivalently, the reduced velocity Ur). A detailed analysis of the distribution of the eigenvalues of the transfer (or, system) matrix of the reduced VIV system shows that the frequency range of the lock-in can be partitioned into resonance and flutter lock-in regimes. The resonance lock-in (lower branch of the VIV response) dominates the fluid-structure interaction. Furthermore, it is shown that when the structural natural frequency is close to one of the eigenfrequencies associated with the wake modes, resonance lock-in (rather than flutter lock-in) will be the primary mechanism governing the VIV response even though the real part of the eigenvalues associated with structural mode is positive. With increasing Reynolds number, the instability of each wake mode is enhanced resulting in a transformation of the wake modes interacting with the structural mode. It is suggested herein that the weakened interaction between the wake modes and the structural mode at Re =180 (associated with the greater separation between the root loci of the modes) results in the premature termination of the resonance lock-in at Fs=0.155 with increasing Ur. The DMD and power spectral analysis of the time series of the transverse displacement and lift coefficient are used to support the results obtained from ROM/ERA and, more specifically, to provide a clear demonstration of the balanced interaction between the wake modes and the structural mode. This result is used to explain the beating phenomenon, which occurs in the initial branch and the significant lag time that arises between the initial branch and the occurrence of a fully developed response in the lower branch.

1.
C.
Feng
, “
The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders
,” Ph.D. thesis (
University of British Columbia
,
1968
).
2.
D.
Brika
and
A.
Laneville
, “
Vortex-induced vibrations of a long flexible circular cylinder
,”
J. Fluid Mech.
250
,
481
508
(
1993
).
3.
H.
Sun
,
C.
Ma
,
E. S.
Kim
,
G.
Nowakowski
,
E.
Mauer
, and
M. M.
Bernitsas
, “
Hydrokinetic energy conversion by two rough tandem-cylinders in flow induced motions: Effect of spacing and stiffness
,”
Renewable Energy
107
,
61
80
(
2017
).
4.
M. M.
Bernitsas
,
Y.
Ben-Simon
,
K.
Raghavan
, and
E.
Garcia
, “
The VIVACE converter: Model tests at high damping and Reynolds number around
105,”
J. Offshore Mech. Arct. Eng.
131
,
011102
(
2009
).
5.
C.
Evangelinos
,
D.
Lucor
, and
G. E.
Karniadakis
, “
DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration
,”
J. Fluids Struct.
14
,
429
440
(
2000
).
6.
R.
Bourguet
, “
Vortex-induced vibrations of a flexible cylinder at subcritical Reynolds number
,”
J. Fluid Mech.
902
,
R3
(
2020
).
7.
R.
Bourguet
, “
Two-degree-of-freedom flow-induced vibrations of a rotating cylinder
,”
J. Fluid Mech.
897
,
A31
(
2020
).
8.
F.
Pan
,
Z.
Xu
,
L.
Jin
,
P.
Pan
, and
X.
Gao
, “
Designed simulation and experiment of a piezoelectric energy harvesting system based on vortex-induced vibration
,”
IEEE Trans. Ind. Appl.
53
,
3890
3897
(
2017
).
9.
W.
Zhang
,
X.
Li
,
Z.
Ye
, and
Y.
Jiang
, “
Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers
,”
J. Fluid Mech.
783
,
72
102
(
2015
).
10.
W.
Zhang
,
Z.
Ye
,
C.
Zhang
, and
F.
Liu
, “
Supersonic flutter analysis based on a local piston theory
,”
AIAA J.
47
,
2321
2328
(
2009
).
11.
D. J.
Lucia
,
P. S.
Beran
, and
W. A.
Silva
, “
Reduced-order modeling: New approaches for computational physics
,”
Prog. Aerosp. Sci.
40
,
51
117
(
2004
).
12.
M.
Ghoreyshi
,
A.
Jirasek
, and
R. M.
Cummings
, “
Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics
,”
Prog. Aerosp. Sci.
71
,
167
217
(
2014
).
13.
E. H.
Dowell
,
H. C.
Curtiss
,
R. H.
Scanlan
, and
F.
Sisto
,
A Modern Course in Aeroelasticity
(
Springer
,
1989
), Vol.
3
.
14.
J.
Juang
and
R. S.
Pappa
, “
An eigensystem realization algorithm for modal parameter identification and model reduction
,”
J. Guid. Control Dyn.
8
,
620
627
(
1985
).
15.
T. J.
Cowan
,
A. S.
Arena
, Jr.
, and
K. K.
Gupta
, “
Accelerating computational fluid dynamics based aeroelastic predictions using system identification
,”
J. Aircr.
38
,
81
87
(
2001
).
16.
J.
Sjöberg
,
Q.
Zhang
,
L.
Ljung
,
A.
Benveniste
,
B.
Deylon
,
P. Y.
Glorennec
,
H.
Hjalmasson
, and
A.
Juditsky
,
Nonlinear Black-Box Modeling in System Identification: A Unified Overview
(
Linköping University
,
1995
).
17.
Navrose
and
S.
Mittal
, “
Lock-in in vortex-induced vibration
,”
J. Fluid Mech.
794
,
565
594
(
2016
).
18.
W.
Yao
and
R.
Jaiman
, “
Model reduction and mechanism for the vortex-induced vibrations of bluff bodies
,”
J. Fluid Mech.
827
,
357
393
(
2017
).
19.
J. N.
Juang
and
R. S.
Pappa
, “
An eigensystem realization algorithm for modal parameter identification and model reduction [control systems design for large space structures], NASA
,” in
JPL Workshop on Identification and Control of Flexible Space Structures
, Pasadena, CA, USA,
1984
.
20.
W. A.
Silva
and
R. E.
Bartels
, “
Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code
,”
J. Fluids Struct.
19
,
729
745
(
2004
).
21.
W. A.
Silva
,
P.
Chwalowski
, and
B.
Perry
 III
, “
Evaluation of linear, inviscid, viscous, and reduced-order modelling aeroelastic solutions of the AGARD 445.6 wing using root locus analysis
,”
Int. J. Comput. Fluid Dyn.
28
,
122
139
(
2014
).
22.
S. L.
Brunton
,
C. W.
Rowley
, and
D. R.
Williams
, “
Reduced-order unsteady aerodynamic models at low Reynolds numbers
,”
J. Fluid Mech.
724
,
203
233
(
2013
).
23.
W.
Yao
and
R.
Jaiman
, “
Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm
,”
J. Fluid Mech.
827
,
394
414
(
2017
).
24.
S. R.
Bukka
,
A. R.
Magee
, and
R.
Jaiman
, “
Stability analysis of passive suppression for vortex-induced vibration
,”
J. Fluid Mech.
886
,
A12
(
2020
).
25.
A.
Chizfahm
and
R.
Jaiman
, “
Data-driven stability analysis and near-wake jet control for the vortex-induced vibration of a sphere
,”
Phys. Fluids
33
,
044104
(
2021
).
26.
X.
Li
,
W.
Zhang
, and
C.
Gao
, “
Proximity-interference wake-induced vibration at subcritical Re: Mechanism analysis using a linear dynamic model
,”
Phys. Fluids
30
,
033606
(
2018
).
27.
A.
Chizfahm
and
R.
Jaiman
, “
Deep learning for stability analysis of a freely vibrating sphere at moderate Reynolds number
,” arXiv:2112.09858 (
2021
).
28.
T. L. B.
Flinois
,
A. S.
Morgans
, and
P. J.
Schmid
, “
Projection-free approximate balanced truncation of large unstable systems
,”
Phys. Rev. E
92
,
023012
(
2015
).
29.
Z.
Ma
,
S.
Ahuja
, and
C. W.
Rowley
, “
Reduced-order models for control of fluids using the eigensystem realization algorithm
,”
Theor. Comput. Fluid Dyn.
25
,
233
247
(
2011
).
30.
X.
Li
,
Z.
Lyu
,
J.
Kou
, and
W.
Zhang
, “
Mode competition in galloping of a square cylinder at low Reynolds number
,”
J. Fluid Mech.
867
,
516
555
(
2019
).
31.
OpenCFD Ltd.
, see https://www.openfoam.com/documentation/guides/latest/doc/ for “
OpenFOAM: User Guide v2006
” (
2019
).
32.
O.
Penttinen
,
E.
Yasari
, and
H.
Nilsson
, “
A pimpleFoam tutorial for channel flow, with respect to different LES models
,”
Pract. Period. Struct. Des. Constr.
23
,
1
23
(
2011
); available at http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2011/OlofPenttinen/projectReport.pdf. google scholar: https://scholar.google.ca/scholar?cluster=9950812316780772466&hl=en&as_sdt=0,5.
33.
A.
Dullweber
,
B.
Leimkuhler
, and
R.
McLachlan
, “
Symplectic splitting methods for rigid body molecular dynamics
,”
J. Chem. Phys.
107
,
5840
5851
(
1997
).
34.
E.
Wang
,
W.
Xu
,
X.
Gao
,
L.
Liu
,
Q.
Xiao
, and
K.
Ramesh
, “
The effect of cubic stiffness nonlinearity on the vortex-induced vibration of a circular cylinder at low Reynolds numbers
,”
Ocean Eng.
173
,
12
27
(
2019
).
35.
D.
Barkley
, “
Linear analysis of the cylinder wake mean flow
,”
Europhys. Lett.
75
,
750
756
(
2006
).
36.
L.
Shieh
,
H.
Wang
, and
R.
Yates
, “
Discrete-continuous model conversion
,”
Appl. Math. Modell.
4
,
449
455
(
1980
).
37.
L.
Lu
,
J.-M.
Qin
,
B.
Teng
, and
Y.-C.
Li
, “
Numerical investigations of lift suppression by feedback rotary oscillation of circular cylinder at low Reynolds number
,”
Phys. Fluids
23
,
033601
(
2011
).
38.
S.
Singh
and
S.
Mittal
, “
Vortex-induced oscillations at low Reynolds numbers: Hysteresis and vortex-shedding modes
,”
J. Fluids Struct.
20
,
1085
1104
(
2005
).
39.
B.
Loring
,
H.
Karimabadi
, and
V.
Rortershteyn
, “
A screen space GPGPU surface LIC algorithm for distributed memory data parallel sort last rendering infrastructures
,” in
Proceedings of the 9th International Conference on Numerical Modeling of Space Plasma Flows (ASTRONUM-2014)
, Long Beach, CA, USA,
2015
.
40.
A. P.
Petkov
, “
Transparent line integral convolution: A new approach for visualizing vector fields in OpenDX
,”
Master's thesis
(
The University of Montana
,
2005
).
41.
F.
Giannetti
and
P.
Luchini
, “
Structural sensitivity of the first instability of the cylinder wake
,”
J. Fluid Mech.
581
,
167
197
(
2007
).
42.
X.
Mao
and
H. M.
Blackburn
, “
The structure of primary instability modes in the steady wake and separation bubble of a square cylinder
,”
Phys. Fluids
26
,
074103
(
2014
).
43.
O.
Marquet
,
D.
Sipp
, and
L.
Jacquin
, “
Sensitivity analysis and passive control of cylinder flow
,”
J. Fluid Mech.
615
,
221
252
(
2008
).
44.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
539
(
1996
).
45.
C.
Cossu
and
L.
Morino
, “
On the instability of a spring-mounted circular cylinder in a viscous flow at low Reynolds numbers
,”
J. Fluids Struct.
14
,
183
196
(
2000
).
46.
S.
Mittal
and
S.
Singh
, “
Vortex-induced vibrations at subcritical Re
,”
J. Fluid Mech.
534
,
185
194
(
2005
).
47.
C.
Gao
,
W.
Zhang
,
X.
Li
,
Y.
Liu
,
J.
Quan
,
Z.
Ye
, and
Y.
Jiang
, “
Mechanism of frequency lock-in in transonic buffeting flow
,”
J. Fluid Mech.
818
,
528
561
(
2017
).
48.
A.
Khalak
and
C.
Williamson
, “
Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
69–71
,
341
350
(
1997
).
49.
A.
Khalak
and
C.
Williamson
, “
Dynamics of a hydroelastic cylinder with very low mass and damping
,”
J. Fluids Struct.
10
,
455
472
(
1996
).
50.
R.
Govardhan
and
C.
Williamson
, “
Resonance forever: Existence of a critical mass and an infinite regime of resonance in vortex-induced vibration
,”
J. Fluid Mech.
473
,
147
166
(
2002
).
51.
O.
Paré-Lambert
and
M.
Olivier
, “
A parametric study of energy extraction from vortex-induced vibrations
,”
Trans. Can. Soc. Mech. Eng.
42
,
359
369
(
2018
).
52.
T. K.
Prasanth
and
S.
Mittal
, “
Vortex-induced vibrations of a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
594
,
463
491
(
2008
).
53.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
54.
M.
Hemati
,
E.
Deem
,
M.
Williams
,
C. W.
Rowley
, and
L. N.
Cattafesta
, “
Improving separation control with noise-robust variants of dynamic mode decomposition
,” AIAA Paper No. 2016-1103,
2016
.
55.
M.
Kiewat
,
T.
Indinger
, and
M.
Tsubokura
, “
Streaming modal decomposition approaches for vehicle aerodynamics
,” Ph.D. thesis (
Universitätsbibliothek Der TU München
,
2019
).
56.
M. S.
Hemati
,
C. W.
Rowley
,
E. A.
Deem
, and
L. N.
Cattafesta
, “
De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets
,”
Theor. Comput. Fluid Dyn.
31
,
349
368
(
2017
).
57.
M. R.
Jovanović
,
P. J.
Schmid
, and
J. W.
Nichols
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
58.
M.
Sahin
and
R.
Owens
, “
A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined cylinder
,”
Phys. Fluids
16
,
1305
(
2004
).
59.
S.
Sarkar
,
S.
Ganguly
,
A.
Dalal
,
P.
Saha
, and
S.
Chakraborty
, “
Mixed convective flow stability of nanofluids past a square cylinder by dynamic mode decomposition
,”
Int. J. Heat Fluid Flow
44
,
624
634
(
2013
).
60.
E.
Åkervik
,
L.
Brandt
,
D. S.
Henningson
,
J.
Hæpffner
,
O.
Marxen
, and
P.
Schlatter
, “
Steady solutions of the Navier–Stokes equations by selective frequency damping
,”
Phys. Fluids
18
,
068102
(
2006
).
You do not currently have access to this content.