We present a general simulation approach for incompressible fluid–structure interactions in a fully Eulerian framework using the reference map technique. The approach is suitable for modeling one or more rigid or finitely deformable objects or soft objects with rigid components interacting with the fluid and with each other. It is also extended to control the kinematics of structures in fluids. The model is based on our previous Eulerian fluid–soft solver [Rycroft et al., “Reference map technique for incompressible fluid–structure interaction,” J. Fluid Mech. 898, A9 (2020)] and generalized to rigid structures by constraining the deformation-rate tensor in a projection framework. Several numerical examples are presented to illustrate the capability of the method.

1.
C. H.
Rycroft
,
C.-H.
Wu
,
Y.
Yu
, and
K.
Kamrin
, “
Reference map technique for incompressible fluid–structure interaction
,”
J. Fluid Mech.
898
,
A9
(
2020
).
2.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
3.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
4.
M.
Uhlmann
, “
An immersed boundary method with direct forcing for the simulation of particulate flows
,”
J. Comput. Phys.
209
,
448
476
(
2005
).
5.
J. H.
Seo
and
R.
Mittal
, “
A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations
,”
J. Comput. Phys.
230
,
7347
7363
(
2011
).
6.
X.
Yang
,
X.
Zhang
,
Z.
Li
, and
G.-W.
He
, “
A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations
,”
J. Comput. Phys.
228
,
7821
7836
(
2009
).
7.
T. G.
Fai
,
B. E.
Griffith
,
Y.
Mori
, and
C. S.
Peskin
, “
Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers I: Numerical method and results
,”
SIAM J. Sci. Comput.
35
,
B1132
B1161
(
2013
).
8.
B. E.
Griffith
,
X.
Luo
,
D. M.
McQueen
, and
C. S.
Peskin
, “
Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method
,”
Int. J. Appl. Mech.
1
,
137
177
(
2009
).
9.
W.-X.
Huang
,
S. J.
Shin
, and
H. J.
Sung
, “
Simulation of flexible filaments in a uniform flow by the immersed boundary method
,”
J. Comput. Phys.
226
,
2206
2228
(
2007
).
10.
C.
Farhat
,
M.
Lesoinne
, and
P. L.
Tallec
, “
Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity
,”
Comput. Methods Appl. Mech. Eng.
157
,
95
114
(
1998
).
11.
H. H.
Hu
,
N. A.
Patankar
, and
M.
Zhu
, “
Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique
,”
J. Comput. Phys.
169
,
427
462
(
2001
).
12.
S.
Rugonyi
and
K.-J.
Bathe
, “
On finite element analysis of fluid flows fully coupled with structural interactions
,”
Comput. Model. Eng. Sci.
2
,
195
212
(
2001
).
13.
C.
Antoci
,
M.
Gallati
, and
S.
Sibilla
, “
Numerical simulation of fluid–structure interaction by SPH
,”
Comput. Struct.
85
,
879
890
(
2007
).
14.
J. J.
Monaghan
, “
Smoothed particle hydrodynamics
,”
Rep. Prog. Phys.
68
,
1703
(
2005
).
15.
Y.
Lian
,
X.
Zhang
, and
Y.
Liu
, “
Coupling of finite element method with material point method by local multi-mesh contact method
,”
Comput. Methods Appl. Mech. Eng.
200
,
3482
3494
(
2011
).
16.
Y.
Zhang
,
X.
Chen
, and
D.
Wan
, “
An MPS-FEM coupled method for the comparative study of liquid sloshing flows interacting with rigid and elastic baffles
,”
Appl. Math. Mech.
37
,
1359
1377
(
2016
).
17.
Z.
Sun
,
K.
Djidjeli
,
J. T.
Xing
, and
F.
Cheng
, “
Modified MPS method for the 2D fluid structure interaction problem with free surface
,”
Comput. Fluids
122
,
47
65
(
2015
).
18.
K.
Kamrin
,
C. H.
Rycroft
, and
J.-C.
Nave
, “
Reference map technique for finite-strain elasticity and fluid–solid interaction
,”
J. Mech. Phys. Solids
60
,
1952
1969
(
2012
).
19.
B.
Valkov
,
C. H.
Rycroft
, and
K.
Kamrin
, “
Eulerian method for multiphase interactions of soft solid bodies in fluids
,”
J. Appl. Mech.
82
,
041011
(
2015
).
20.
K. N.
Kamrin
, “
Stochastic and deterministic models for dense granular flow
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2008
).
21.
S. S.
Jain
,
K.
Kamrin
, and
A.
Mani
, “
A conservative and non-dissipative Eulerian formulation for the simulation of soft solids in fluids
,”
J. Comput. Phys.
399
,
108922
(
2019
).
22.
A. J.
Chorin
, “
A numerical method for solving incompressible viscous flow problems
,”
J. Comput. Phys.
2
,
12
26
(
1967
).
23.
A. J.
Chorin
, “
Numerical solution of the Navier–Stokes equations
,”
Math. Comput.
22
,
745
762
(
1968
).
24.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewy
, “
On the partial difference equations of mathematical physics
,”
IBM J. Res. Dev.
11
,
215
234
(
1967
).
25.
Y. L.
Young
,
M. R.
Motley
,
R.
Barber
,
E. J.
Chae
, and
N.
Garg
, “
Adaptive composite marine propulsors and turbines: Progress and challenges
,”
Appl. Mech. Rev.
68
,
060803
(
2016
).
26.
L. A.
Miller
, “
Structural dynamics and resonance in plants with nonlinear stiffness
,”
J. Theor. Biol.
234
,
511
524
(
2005
).
27.
T.
Speck
and
I.
Burgert
, “
Plant stems: Functional design and mechanics
,”
Annu. Rev. Mater. Res.
41
,
169
193
(
2011
).
28.
P.
Causin
,
J.-F.
Gerbeau
, and
F.
Nobile
, “
Added-mass effect in the design of partitioned algorithms for fluid–structure problems
,”
Comput. Methods Appl. Mech. Eng.
194
,
4506
4527
(
2005
).
29.
S.
Badia
,
F.
Nobile
, and
C.
Vergara
, “
Fluid–structure partitioned procedures based on robin transmission conditions
,”
J. Comput. Phys.
227
,
7027
7051
(
2008
).
30.
T.
Kempe
and
J.
Fröhlich
, “
An improved immersed boundary method with direct forcing for the simulation of particle laden flows
,”
J. Comput. Phys.
231
,
3663
3684
(
2012
).
31.
A.
Robinson-Mosher
,
C.
Schroeder
, and
R.
Fedkiw
, “
A symmetric positive definite formulation for monolithic fluid structure interaction
,”
J. Comput. Phys.
230
,
1547
1566
(
2011
).
32.
F.
Gibou
and
C.
Min
, “
Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions
,”
J. Comput. Phys.
231
,
3246
3263
(
2012
).
33.
C.
Batty
,
F.
Bertails
, and
R.
Bridson
, “
A fast variational framework for accurate solid–fluid coupling
,”
ACM Trans. Graph. (TOG)
26
,
100
(
2007
).
34.
S. V.
Apte
,
M.
Martin
, and
N. A.
Patankar
, “
A numerical method for fully resolved simulation (FRS) of rigid particle–flow interactions in complex flows
,”
J. Comput. Phys.
228
,
2712
2738
(
2009
).
35.
J. T.
Grétarsson
,
N.
Kwatra
, and
R.
Fedkiw
, “
Numerically stable fluid–structure interactions between compressible flow and solid structures
,”
J. Comput. Phys.
230
,
3062
3084
(
2011
).
36.
A. S.
Almgren
,
J. B.
Bell
, and
W. G.
Szymczak
, “
A numerical method for the incompressible Navier–Stokes equations based on an approximate projection
,”
SIAM J. Sci. Comput.
17
,
358
369
(
1996
).
37.
R.
Glowinski
,
T.-W.
Pan
,
T. I.
Hesla
,
D. D.
Joseph
, and
J.
Periaux
, “
A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow
,”
J. Comput. Phys.
169
,
363
426
(
2001
).
38.
N. A.
Patankar
,
P.
Singh
,
D. D.
Joseph
,
R.
Glowinski
, and
T.-W.
Pan
, “
A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows
,”
Int. J. Multiphase Flow
26
,
1509
1524
(
2000
).
39.
M.
Coquerelle
and
G.-H.
Cottet
, “
A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies
,”
J. Comput. Phys.
227
,
9121
9137
(
2008
).
40.
J. A.
Sethian
,
Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science
(
Cambridge University Press
,
1996
), Vol.
74
.
41.
S.
Osher
,
R.
Fedkiw
, and
K.
Piechor
, “
Level set methods and dynamic implicit surfaces
,”
Appl. Mech. Rev.
57
,
B15
(
2004
).
42.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
159
(
1994
).
43.
M.
Sussman
and
P.
Smereka
, “
Axisymmetric free boundary problems
,”
J. Fluid Mech.
341
,
269
294
(
1997
).
44.
J.-D.
Yu
,
S.
Sakai
, and
J. A.
Sethian
, “
A coupled level set projection method applied to ink jet simulation
,”
Interfaces Free Bound.
5
,
459
482
(
2003
).
45.
M. E.
Gurtin
,
E.
Fried
, and
L.
Anand
,
The Mechanics and Thermodynamics of Continua
(
Cambridge University Press
,
2010
).
46.
V. D.
Fachinotti
,
A.
Cardona
, and
P.
Jetteur
, “
Finite element modelling of inverse design problems in large deformations anisotropic hyperelasticity
,”
Int. J. Numer. Methods Eng.
74
,
894
910
(
2008
).
47.
D. I.
Levin
,
J.
Litven
,
G. L.
Jones
,
S.
Sueda
, and
D. K.
Pai
, “
Eulerian solid simulation with contact
,”
ACM Trans. Graph. (TOG)
30
,
1
(
2011
).
48.
G.-H.
Cottet
,
E.
Maitre
, and
T.
Milcent
, “
Eulerian formulation and level set models for incompressible fluid-structure interaction
,”
ESAIM: Math. Modell. Numer. Anal.
42
,
471
492
(
2008
).
49.
C. H.
Rycroft
and
F.
Gibou
, “
Simulations of a stretching bar using a plasticity model from the shear transformation zone theory
,”
J. Comput. Phys.
231
,
2155
2179
(
2012
).
50.
P.
Colella
, “
Multidimensional upwind methods for hyperbolic conservation laws
,”
J. Comput. Phys.
87
,
171
200
(
1990
).
51.
M.
Sussman
,
A. S.
Almgren
,
J. B.
Bell
,
P.
Colella
,
L. H.
Howell
, and
M. L.
Welcome
, “
An adaptive level set approach for incompressible two-phase flows
,”
J. Comput. Phys.
148
,
81
124
(
1999
).
52.
S.-C. T.
Choi
,
C. C.
Paige
, and
M. A.
Saunders
, “
MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems
,”
SIAM J. Sci. Comput.
33
,
1810
1836
(
2011
).
53.
C. C.
Paige
and
M. A.
Saunders
, “
Solution of sparse indefinite systems of linear equations
,”
SIAM J. Numer. Anal.
12
,
617
629
(
1975
).
54.
W. L.
Briggs
,
V. E.
Henson
, and
S. F.
McCormick
,
A Multigrid Tutorial: Second Edition
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2000
).
55.
J. W.
Demmel
,
Applied Numerical Linear Algebra
(
SIAM
,
1997
), Vol.
56
.
56.
See https://github.com/chr1shr/tgmg for “
TGMG: A templated geometric multigrid library in C++
” (
2020
).
57.
G. I.
Barenblatt
,
Scaling
(
Cambridge University Press
,
2003
).
58.
X.
Wang
and
W. K.
Liu
, “
Extended immersed boundary method using FEM and RKPM
,”
Comput. Methods Appl. Mech. Eng.
193
,
1305
1321
(
2004
).
59.
H.
Wang
,
J.
Chessa
,
W. K.
Liu
, and
T.
Belytschko
, “
The immersed/fictitious element method for fluid–structure interaction: Volumetric consistency, compressibility and thin members
,”
Int. J. Numer. Methods Eng.
74
,
32
55
(
2008
).
60.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
2012
), Vol.
1
.
61.
H.
Hencky
, “
Uber die form des elastizitatsgesetzes bei ideal elastischen stoffen
,”
Zeit. Tech. Phys.
9
,
215
220
(
1928
).
62.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems
,”
J. Comput. Phys.
195
,
602
628
(
2004
).
63.
A. F.
Fortes
,
D. D.
Joseph
, and
T. S.
Lundgren
, “
Nonlinear mechanics of fluidization of beds of spherical particles
,”
J. Fluid Mech.
177
,
467
483
(
1987
).
64.
R. J.
LeVeque
et al.,
Finite Volume Methods for Hyperbolic Problems
(
Cambridge University Press
,
2002
), Vol.
31
.
You do not currently have access to this content.