The detonation-powered underwater engine, with the advantages of high specific impulse, high speed, and simple structure, has very broad application prospects in the field of underwater propulsion, and dual-tube combination is an effective means to improve its propulsion performance. In this work, near-field pressure evolution of shock waves and high-pressure zones between two detonation tubes is numerically studied. The two-fluid model and three-dimensional conservation element and solution element method are adopted to reveal the formation, intersection, and interaction of shock waves. Detonation waves generated by two detonation tubes decouple into shock waves after penetrating into water and form a high-pressure zone near each tube exit. The two leading shock waves intersect with each other in the propagation, creating the second high-pressure zone between two tubes. Then, a propagating forward merged new shock wave covers the two original wave-fronts and maintains higher pressure. Pressure evolution under different tube intervals, ignition delays, and filling conditions is also presented to discuss their influence on the performance of dual-tube detonation. The intensity and directivity of shock waves are found to be sensitive to these factors, complexly affecting the thrust components, which provides a depth understanding of dual-tube combination in the application.

1.
J. H.
Lee
,
The Detonation Phenomenon
(
Cambridge University Press
,
Cambridge
,
2008
).
2.
Y. B.
Zeldovich
, “
To the question of energy use of detonation combustion
,”
J. Propul. Power
22
(
3
),
588
592
(
2006
).
3.
R. H.
Cole
,
Underwater Explosions
(
Princeton University Press
,
New Jersy
,
1948
).
4.
J.
Koch
and
J. N.
Kutz
, “
Modeling thermodynamic trends of rotating detonation engines
,”
Phys. Fluids
32
,
126102
(
2020
).
5.
W. Q.
Chen
,
J. H.
Liang
,
X. D.
Cai
, and
Y.
Mahmoudi
, “
Three-dimensional simulations of detonation propagation in circular tubes: Effects of jet initiation and wall reflection
,”
Phys. Fluids
32
(
4
),
046104
(
2020
).
6.
S. M.
Frolov
,
V. S.
Aksenov
,
V. S.
Ivanov
,
I. O.
Shamshin
, and
A. E.
Zangiev
, “
Air-breathing pulsed detonation thrust module: Numerical simulations and firing tests
,”
Aerosp. Sci. Technol.
89
,
275
287
(
2019
).
7.
Z. W.
Wang
,
W. F.
Qin
,
J. J.
Huang
,
L. S.
Wei
,
Y. F.
Wang
,
L. F.
Zhang
, and
Z.
Liu
, “
Experimental study on the temperature and structure of the exhaust plume in valveless pulse detonation engines
,”
Aerosp. Sci. Technol.
117
,
106907
(
2021
).
8.
Q. B.
Zhang
,
X. Q.
Qiao
,
W.
Fan
,
K.
Wang
,
F. G.
Tan
, and
J. G.
Wang
, “
Study on operation and propulsion features of a pulse detonation rocket engine with secondary oxidizer injection
,”
Appl. Therm. Eng.
180
,
115661
(
2020
).
9.
B. X.
Li
,
Y. W.
Wu
,
C. S.
Weng
,
Q.
Zheng
, and
W. L.
Wei
, “
Influence of equivalence ratio on the propagation characteristics of rotating detonation wave
,”
Exp. Therm. Fluid Sci.
93
,
366
378
(
2018
).
10.
Y.
Liu
,
W. J.
Zhou
,
Y. J.
Yang
,
Z.
Liu
, and
J. P.
Wang
, “
Numerical study on the instabilities in H2-air rotating detonation engines
,”
Phys. Fluids
30
(
4
),
046106
(
2018
).
11.
T. W.
Zhang
,
J.
Wu
, and
X. J.
Lin
, “
An interface-compressed diffuse interface method and its application for multiphase flows
,”
Phys. Fluids
31
,
122102
(
2019
).
12.
X. W.
Zhang
,
Y. G.
Yu
, and
L. L.
Zhou
, “
Numerical study on the multiphase flow characteristics of gas curtain launch for underwater gun
,”
Int. J. Heat Mass Transfer
134
,
250
261
(
2019
).
13.
X. Y.
Zhang
,
S. P.
Li
,
D.
Yu
,
B. Y.
Yang
, and
N. F.
Wang
, “
The evolution of interfaces for underwater supersonic gas jets
,”
Water
12
(
2
),
488
(
2020
).
14.
S. M.
Frolov
,
K. A.
Avdeev
,
V. S.
Aksenov
,
A. A.
Borisov
,
F. S.
Frolov
,
I. O.
Shamshin
,
R. R.
Tukhvatullina
,
B.
Basara
,
W.
Edelbauer
, and
K.
Pachler
, “
Experimental and computational studies of shock wave-to-bubbly water momentum transfer
,”
Int. J. Multiphase Flow
92
,
20
38
(
2017
).
15.
S. M.
Frolov
,
K. A.
Avdeev
,
V. S.
Aksenov
,
F. S.
Frolov
,
I. A.
Sadykov
,
I. O.
Shamshin
, and
R. R.
Tukhvatullina
, “
Pulsed detonation hydroramjet: Simulations and experiments
,”
Shock Waves
30
(
3
),
221
234
(
2020
).
16.
W.
Liu
,
N.
Li
,
C. S.
Weng
,
X. L.
Huang
, and
Y.
Kang
, “
Bubble dynamics and pressure field characteristics of underwater detonation gas jet generated by a detonation tube
,”
Phys. Fluids
33
(
2
),
023302
(
2021
).
17.
W.
Liu
,
N.
Li
,
X. L.
Huang
,
Y.
Kang
,
C.
Li
,
W.
Qiang
, and
C. S.
Weng
, “
Experimental study of underwater pulse detonation gas jets: Bubble velocity field and time–frequency characteristics of pressure field
,”
Phys. Fluids
33
(
8
),
083324
(
2021
).
18.
K.
Ando
,
T.
Colonius
, and
C. E.
Brennen
, “
Numerical simulation of shock propagation in a polydisperse bubbly liquid
,”
Int. J. Multiphase Flow
37
(
6
),
596
608
(
2011
).
19.
K.
Ando
,
T.
Sanada
,
K.
Inaba
,
J. S.
Damazo
,
J. E.
Shepherd
,
T.
Colonius
, and
C. E.
Brennen
, “
Shock propagation through a bubbly liquid in a deformable tube
,”
J. Fluid Mech.
671
,
339
363
(
2011
).
20.
G.
Jourdan
,
C.
Mariani
,
L.
Houas
,
A.
Chinnayya
,
A.
Hadjadj
,
E.
Del Prete
,
J. F.
Haas
,
N.
Rambert
,
D.
Counilh
, and
S.
Faure
, “
Analysis of shock-wave propagation in aqueous foams using shock tube experiments
,”
Phys. Fluids
27
(
5
),
056101
(
2015
).
21.
A. A.
Borisov
,
B. E.
Gelfand
, and
E. I.
Timofeev
, “
Shock waves in liquids containing gas bubbles
,”
Int. J. Multiphase Flow
9
(
5
),
531
543
(
1983
).
22.
G.
Terrones
and
T.
Heberling
, “
Rayleigh–Taylor instability at spherical interfaces between viscous fluids: The fluid/fluid interface
,”
Phys. Fluids
32
,
094105
(
2020
).
23.
Z. W.
Wang
,
J.
Lu
,
J. J.
Huang
,
C. X.
Peng
, and
L. X.
Zheng
, “
Experimental investigation on the operating characteristics in a multi-tube two-phase valveless air-breathing pulse detonation engine
,”
Appl. Therm. Eng.
73
(
1
),
23
31
(
2014
).
24.
J.
Lu
,
L.
Zheng
,
Z.
Wang
,
C.
Peng
, and
X.
Chen
, “
Operating characteristics and propagation of back-pressure waves in a multi-tube two-phase valveless air-breathing pulse detonation combustor
,”
Exp. Therm. Fluid Sci.
61
,
12
23
(
2015
).
25.
J.
Wang
and
C. S.
Weng
, “
Numerical calculation of 3-D flow outside multi-tube pulse detonation engine
,”
Chin. J. Theor. Appl. Mech.
41
(
6
),
835
841
(
2009
).
26.
S. J.
Lin
,
J. X.
Wang
,
L. T.
Liu
,
H.
Li
,
T.
Ma
, and
K.
Tang
, “
Research on damage effect of underwater multipoint synchronous explosion shock waves on air-backed clamped circular plate
,”
Ocean Eng.
240
,
109985
(
2021
).
27.
N. N.
Liu
,
A. M.
Zhang
,
Y. L.
Liu
, and
T.
Li
, “
Numerical analysis of the interaction of two underwater explosion bubbles using the compressible Eulerian finite-element method
,”
Phys. Fluids
32
(
4
),
046107
(
2020
).
28.
N. N.
Liu
,
A. M.
Zhang
,
P.
Cui
,
S. P.
Wang
, and
S.
Li
, “
Interaction of two out-of-phase underwater explosion bubbles
,”
Phys. Fluids
33
,
106103
(
2021
).
29.
V. T.
Nguyen
and
W. G.
Park
, “
A volume-of-fluid (VOF) interface-sharpening method for two-phase incompressible flows
,”
Comput. Fluids
152
,
104
119
(
2017
).
30.
E.
Olsson
and
G.
Kreiss
, “
A conservative level set method for two phase flow
,”
J. Comput. Phys.
210
(
1
),
225
246
(
2005
).
31.
S.
Osher
and
R. P.
Fedkiw
, “
Level set methods: An overview and some recent results
,”
J. Comput. Phys.
169
(
2
),
463
502
(
2001
).
32.
K.
Saunders
,
M.
Prakash
,
P. W.
Cleary
, and
M.
Cordell
, “
Application of smoothed particle hydrodynamics for modelling gated spillway flows
,”
Appl. Math. Modell.
38
(
17–18
),
4308
4322
(
2014
).
33.
F. X.
Hu
, “
High-order mapped WENO methods with improved efficiency
,”
Comput. Fluids
219
,
104874
(
2021
).
34.
L.
Pan
,
G. Y.
Cao
, and
K.
Xu
, “
Fourth-order gas-kinetic scheme for turbulence simulation with multi-dimensional WENO reconstruction
,”
Comput. Fluids
221
,
104927
(
2021
).
35.
D.
Sidilkover
, “
Towards unification of the vorticity confinement and shock capturing (TVD and ENO/WENO) methods
,”
J. Comput. Phys.
358
,
235
255
(
2018
).
36.
S. C.
Chang
, “
The method of space-time conservation element and solution element—A new approach for solving the Navier-Stokes and Euler equations
,”
J. Comput. Phys.
119
,
295
324
(
1995
).
37.
S. C.
Chang
,
X. Y.
Wang
, and
C. Y.
Chow
, “
The space-time conservation element and solution element method—A new high-resolution and genuinely multidimensional paradigm for solving conservation laws
,”
J. Comput. Phys.
156
,
89
136
(
1999
).
38.
M. R.
Betney
,
B.
Tully
,
N. A.
Hawker
, and
Y.
Ventikos
, “
Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid
,”
Phys. Fluids
27
(
3
),
036101
(
2015
).
39.
X. L.
Huang
,
C. S.
Weng
,
N.
Li
, and
G. Y.
Xu
, “
Experimental study on acoustic behavior of dual-tube pulse detonation engine in near field
,”
J. Propul. Technol.
38
(
5
),
1194
1200
(
2017
).
40.
Y. Y.
Niu
, “
Computations of two-fluid models based on a simple and robust hybrid primitive variable Riemann solver with AUSMD
,”
J. Comput. Phys.
308
,
389
410
(
2016
).
41.
F. Y.
Liu
,
H. D.
Chen
, and
J. Y.
Chen
, “
Numerical simulation of shock wave problems with the two-phase two-fluid model
,”
Prog. Nucl. Energy
121
,
103259
(
2020
).
42.
R. W.
Houim
and
R. T.
Fievisohn
, “
The influence of acoustic impedance on gaseous layered detonations bounded by an inert gas
,”
Combust. Flame
179
,
185
198
(
2017
).
43.
R.
Courant
and
K. O.
Friedrichs
,
Supersonic Flow and Shock Waves
(
Interscience Pub
.,
New York
,
1976
).
You do not currently have access to this content.