This study experimentally investigates the entry of hydrophobic/hydrophilic spheres into Newtonian and Boger fluids. By considering solution of 82% glycerin and 18% water and solution of 80% glycerin, 20% water and 100 ppm polyacrylamide, Newtonian and Boger fluids are made, respectively. It has been tried that liquids' surface tension, density, and viscosity are almost the same. Thus, all dimensionless numbers are approximately the same at a similar impact velocity except for the elasticity number. A PcoDimaxS highspeed camera captures the spheres' trajectory from the impact to the end of the path. Regarding the range of released height (0.5100cm), the impact velocities are approximately in the range of 0.314.43ms1. The role of fluid elasticity in combination with the sphere surface wettability on the air cavity formation/evolution/collapse is mainly studied. Also, the kinetics of the sphere motion (velocity, acceleration, and hydrodynamic force coefficient) is studied. The results show that air drawn due to the sphere's impact with the Newtonian liquid is more, and the pinch-off takes place later. Also, shedding bubbles are cusped-shaped in the Boger fluid, while in the Newtonian fluid, they are elliptical. In addition, the most significant impact of surface wettability is observed in the Newtonian fluid. Finally, the results reveal that the sphere in the Newtonian fluid can move faster and travel a longer distance in a specific time interval. The differences observed are closely related to the viscoelastic fluid's elasticity property and extensional viscosity.

1.
J. D.
Bernardin
,
I.
Mudawar
,
C. B.
Walsh
, and
E. I.
Franses
, “
Contact angle temperature dependence for water droplets on practical aluminum surfaces
,”
Int. J. Heat Mass Transfer
40
,
1017
1033
(
1997
).
2.
Z.
Cui
,
J. M.
Fan
, and
A. H.
Park
, “
Drag coefficients for a settling sphere with microbubble drag reduction effects
,”
Powder Technol.
138
,
132
134
(
2003
).
3.
M. D.
Graham
, “
Drag reduction in turbulent flow of polymer solutions
,”
Rheol. Rev.
2
,
143
170
(
2004
).
4.
S.
Mäkiharju
and
S. L.
Ceccio
, “
Air lubrication drag reduction on great lakes ships
,”
Technical Report
(
University of Michigan
,
2012
); available at https://www.semanticscholar.org/paper/Air-Lubrication-Drag-Reduction-on-Great-Lakes-Ships-M%C3%A4kiharju-Ceccio/bae0ee4896181e1b0221e4e408c3929ae55b1731?sort=relevance&citationIntent=background.
5.
M. T.
Arigo
and
G. H.
McKinley
, “
The effects of viscoelasticity on the transient motion of a sphere in a shear-thinning fluid
,”
J. Rheol.
41
,
103
(
1997
).
6.
N. J.
Shirtcliffe
,
G.
McHale
,
S.
Atherton
, and
M. I.
Newton
, “
An introduction to superhydrophobicity
,”
Adv. Colloid Interface Sci.
161
,
124
138
(
2010
).
7.
C.
Seddon
and
M.
Moatamedi
, “
Review of water entry with applications to aerospace structures
,”
Int. J. Impact Eng.
32
,
1045
1067
(
2006
).
8.
A.
May
and
W.
Hoover
, “
A study of the water-entry cavity
,”
Report No. NOLTR 63-264
(
1963
).
9.
M. M.
Mansoor
,
J.
Marston
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Water entry without surface seal: Extended cavity formation
,”
J. Fluid Mech.
743
,
295
326
(
2014
).
10.
M.
Barjasteh
and
H.
Zeraatgar
, “
Numerical evaluation of cushioning pressure in water entry of rigid bodies
,”
Int. J. Mar. Technol.
8
,
15
24
(
2017
).
11.
M.
Jalalisendi
,
G.
Benbelkacem
, and
M.
Porfiri
, “
Solid obstacles can reduce hydrodynamic loading during water entry
,”
Phys. Rev. Fluids
3
(
7
),
074801
(
2018
).
12.
E.
Yari
and
H.
Ghassemi
, “
The unsteady hydrodynamic characteristics of a partial submerged propeller via a RANS solver
,”
Int. J. Mar. Technol.
14
(
3
),
111
123
(
2015
).
13.
T.
Sun
,
C.
Shi
,
G.
Zhang
,
B.
Zhou
, and
H.
Wang
, “
Cavity dynamics of vertical water entry of a truncated cone–cylinder body with different angles of attack
,”
Phys. Fluids
33
,
055129
(
2021
).
14.
D. S.
Gupta
and
E. H.
Tudor
, “
Method for fracturing subterranean formations
,” U.S. patent 6,875,728 (
2005
), Vol.
6
, pp.
875
728
.
15.
D.
Gupta
,
T. T.
Leshchyshyn
, and
B. T.
Hlidek
, “
Surfactant gel foam/emulsion: History and field application in western Canadian sedimentary basin
,” in
Proceedings of the SPE Annual Technical Conference and Exhibition
, Dallas, Texas, October (
2005
).
16.
G. H.
McKinley
, “
Steady and transient motion of spherical particles in viscoelastic liquids
,”
Transport Processes in Bubbles, Drops and Particles
, 2nd ed., edited by
D.
De Kee
and
R. P.
Chhabra
(
Taylor and Francis
,
New York, NY
,
2002
), pp.
338
375
.
17.
A.
Mehri
and
P.
Akbarzadeh
, “
Hydrodynamic characteristics of heated/non-heated and grooved/un-grooved spheres during free-surface water entry
,”
J. Fluids Struct.
97
,
103100
(
2020
).
18.
A.
Mehri
and
P.
Akbarzadeh
, “
Water entry of grooved spheres: Effect of the number of grooves and impact velocity
,”
J. Fluids Struct.
100
,
103198
(
2021
).
19.
A. M.
Worthington
and
R. S.
Cole
, “
Impact with a liquid surface studied by the aid of instantaneous photography. II
,”
Philos. Trans. R. Soc. London, Ser. A
194
,
175
199
(
1900
).
20.
M.
Lee
,
R.
Longoria
, and
D.
Wilson
, “
Cavity dynamics in high-speed water entry
,”
Phys. Fluids
9
(
3
),
540
550
(
1997
).
21.
J.
Marston
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Cavity formation by the impact of Leidenfrost spheres
,”
J. Fluid Mech.
699
,
465
488
(
2012
).
22.
M. M.
Mansoor
,
I. U.
Vakarelski
,
J.
Marston
,
T.
Truscott
, and
S. T.
Thoroddsen
, “
Stable-streamlined and helical cavities following the impact of Leidenfrost spheres
,”
J. Fluid Mech.
823
,
716
754
(
2017
).
23.
A.
Jetly
,
I. A.
Vakarelski
,
Z.
Yang
, and
S. T.
Thoroddsen
, “
Giant drag reduction on Leidenfrost spheres evaluated from extended free-fall trajectories
,”
Exp. Therm. Fluid Sci.
102
,
181
188
(
2019
).
24.
J. M.
Aristoff
,
T. T.
Truscott
,
A. H.
Techet
, and
J. W.
Bush
, “
The water entry of decelerating spheres
,”
Phys. Fluids
22
(
3
),
032102
(
2010
).
25.
C.
Duez
,
C.
Ybert
,
C.
Clanet
, and
L.
Bocquet
, “
Making a splash with water repellency
,”
Nat. Phys.
3
(
3
),
180
183
(
2007
).
26.
S.
Gekle
and
J. M.
Gordillo
, “
Generation and breakup of Worthington jets after cavity collapse. I. Jet formation
,”
J. Fluid Mech.
663
,
293
330
(
2010
).
27.
S.
Zhao
,
C.
Wei
, and
C.
Wang
, “
Numerical investigation of water entry of half hydrophilic and half hydrophobic spheres
,”
Math. Probl. Eng.
2016
,
5265818
.
28.
D. A.
Watson
,
J. L.
Stephen
, and
A. K.
Dickerson
, “
Jet amplification and cavity formation induced by penetrable fabrics in hydrophilic sphere entry
,”
Phys. Fluids
30
(
8
),
082109
(
2018
).
29.
T. T.
Truscott
,
B. P.
Epps
, and
J.
Belden
, “
Water entry of projectiles
,”
Annu. Rev. Fluid Mech.
46
,
355
378
(
2014
).
30.
S. D.
Guleria
,
A.
Dhar
, and
D. V.
Patil
, “
Experimental insights on the water entry of hydrophobic sphere
,”
Phys. Fluids
33
,
102109
(
2021
).
31.
J. M.
Aristoff
,
T. T.
Truscott
,
A. H.
Techet
, and
J. W.
Bush
, “
The water-entry cavity formed by low Bond number impacts
,”
Phys. Fluids
20
(
9
),
091111
(
2008
).
32.
J. M.
Aristoff
and
J. W.
Bush
, “
Water entry of small hydrophobic spheres
,”
J. Fluid Mech.
619
,
45
78
(
2009
).
33.
D.
Li
,
J.
Zhang
,
M.
Zhang
,
B.
Huang
,
X.
Ma
, and
G.
Wang
, “
Experimental study on water entry of spheres with different surface wettability
,”
Ocean Eng.
187
,
106123
(
2019
).
34.
I. U.
Vakarelski
,
A.
Jetly
, and
S. T.
Thoroddsen
, “
Stable-streamlined cavities following the impact of non-superhydrophobic spheres on water
,”
Soft Matter
15
,
6278
6287
(
2019
).
35.
J.
Glasheen
and
T.
McMahon
, “
Vertical water entry of disks at low Froude numbers
,”
Phys. Fluids
8
(
8
),
2078
2083
(
1996
).
36.
K. G.
Bodily
,
S. J.
Carlson
, and
T. T.
Truscott
, “
The water entry of slender axisymmetric bodies
,”
Phys. Fluids
26
(
7
),
072108
(
2014
).
37.
V.
Duclaux
,
F.
Caillé
,
C.
Duez
,
C.
Ybert
,
L.
Bocquet
, and
C.
Clanet
, “
Dynamics of transient cavities
,”
J. Fluid Mech.
591
,
1
19
(
2007
).
38.
Y.
Kubota
and
O.
Mochizuki
, “
Influence of head shape of solid body plunging into water on splash formation
,”
J. Visualization
14
(
2
),
111
119
(
2011
).
39.
J. O.
Marston
,
T. T.
Truscott
,
N. B.
Speirs
,
M. M.
Mansoor
, and
S. T.
Thoroddsen
, “
Crown sealing and buckling instability during water entry of spheres
,”
J. Fluid Mech.
794
,
506
529
(
2016
).
40.
D.
Gilbarg
and
R. A.
Anderson
, “
Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water
,”
J. Appl. Phys.
19
(
2
),
127
139
(
1948
).
41.
D. A.
Watson
,
C. J.
Souchik
,
M. P.
Weinberg
,
J. M.
Bom
, and
A. K.
Dickerson
, “
Making a splash with fabrics in hydrophilic sphere entry
,”
J. Fluids Struct.
94
,
102907
(
2020
).
42.
Z.
Guo
,
T.
Chen
,
Z.
Mu
, and
W.
Zhang
, “
An investigation into container constraint effects on the cavity characteristics due to high-speed projectile water entry
,”
Ocean Eng.
210
,
107449
(
2020
).
43.
Q.
Zhang
,
Z.
Zong
,
T. Z.
Sun
,
Y. Q.
Yu
, and
H. T.
Li
, “
Characteristics of cavity collapse behind a high-speed projectile entering the water
,”
Phys. Fluids
33
(
6
),
062110
(
2021
).
44.
Y.
Hou
,
Z.
Huang
,
Z.
Chen
,
Z.
Guo
, and
L.
Han
, “
Different closure patterns of the hollow cylinder cavities with various water-entry velocities
,”
Ocean Eng.
221
,
108526
(
2021
).
45.
M.
Jamali
,
A.
Rostamijavanani
,
N. M.
Nouri
, and
M.
Navidbakhsh
, “
An experimental study of cavity and Worthington jet formations caused by a falling sphere into an oil film on water
,”
Appl. Ocean Res.
102
,
102319
(
2020
).
46.
J.
Wang
,
O. M.
Faltinsen
, and
C.
Lugni
, “
Unsteady hydrodynamic forces of solid objects vertically entering the water surface
,”
Phys. Fluids
31
(
2
),
027101
(
2019
).
47.
S. Y.
Sun
and
G. X.
Wu
, “
Local flow at plate edge during water entry
,”
Phys. Fluids
32
,
072103
(
2020
).
48.
R. P.
Chhabra
,
Bubbles, Drops, and Particles in Non-Newtonian Fluids
, 2nd ed. (
CRC Press
,
2007
).
49.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
, 2nd ed. (
John Wiley and Sons, Inc
.,
New York
,
1987
).
50.
P. D. M. M.
Amaratunga
,
R. H.
Rabenjafimanantsoa
, and
R. W.
Time
, “
Influence of low-frequency oscillatory motion on particle settling in Newtonian and shear-thinning non-Newtonian fluids
,”
J. Pet. Sci. Eng.
196
,
107786
(
2021
).
51.
J. M.
Cheny
and
K.
Walters
, “
Rheological influences on the splashing experiment
,”
J. Non-Newtonian Fluid Mech.
86
(
1–2
),
185
210
(
1999
).
52.
J. M.
Cheny
and
K.
Walters
, “
Extravagant viscoelastic effects in the Worthington jet experiment
,”
J. Non-Newtonian Fluid Mech.
67
,
125
135
(
1996
).
53.
S.
Nigen
and
K.
Walters
, “
On the two-dimensional splashing experiment for Newtonian and slightly elastic liquids
,”
J. Non-Newtonian Fluid Mech.
97
(
2–3
),
233
250
(
2001
).
54.
B.
Akers
and
A.
Belmonte
, “
Impact dynamics of a solid sphere falling into a viscoelastic micellar fluid
,”
J. Non-Newtonian Fluid Mech.
135
(
2–3
),
97
108
(
2006
).
55.
H.
Tabuteau
,
D.
Sikorski
,
J.
Simon
, and
J. R.
de Bruyn
, “
Impact of spherical projectiles into a viscoplastic fluid
,”
Phys. Rev. E
84
(
3
),
031403
(
2011
).
56.
T. C.
Goede
,
K. G.
de Bruin
, and
D.
Bonn
, “
High-velocity impact of solid objects on non-Newtonian fluids
,”
Sci. Rep.
9
,
1
8
(
2019
).
57.
K. P.
Jackson
,
K.
Walters
, and
R. W.
Williams
, “
A rheometrical study of Boger fluids
,”
J. Non-Newtonian Fluid Mech.
14
(
1
),
173
188
(
1984
).
58.
D. F.
James
, “
Boger fluids
,”
Annu. Rev. Fluid Mech.
41
,
129
142
(
2009
).
59.
V.
Tirtaatmadja
and
T.
Sridhar
, “
Comparison of constitutive equations for polymer solutions in uniaxial extension
,”
J. Rheol.
39
,
1133
1160
(
1995
).
60.
B. P.
Epps
,
T. T.
Truscott
, and
A. H.
Techet
, “
Evaluating derivatives of experimental data using smoothing splines
,” in
Proceedings of Mathematical Methods in Engineering International Symposium (MMEI), 21–24 October
, Lisbon, Portugal (
2010
).
61.
A. H.
Techet
and
T. T.
Truscott
, “
Water entry of spinning hydrophobic and hydrophilic spheres
,”
J. Fluids Struct.
27
(
5–6
),
716
726
(
2011
).
62.
T. T.
Truscott
,
B. P.
Epps
, and
A. H.
Techet
, “
Unsteady forces on spheres during free surface water entry
,”
J. Fluid Mech.
704
,
173
210
(
2012
).
63.
T. T.
Truscott
and
A. H.
Techet
, “
Water entry of spinning spheres
,”
J. Fluid Mech.
625
,
135
165
(
2009
).
64.
O.
Hassager
, “
Negative wake behind bubbles in non-Newtonian liquids
,”
Nature
279
(
5712
),
402
403
(
1979
).
65.
M. T.
Arigo
,
D.
Rajagopalan
,
N.
Shapley
, and
G. H.
McKinley
, “
The sedimentation of a sphere through an elastic fluid. I. Steady motion
,”
J. Non-Newtonian Fluid Mech.
60
(
2–3
),
225
257
(
1995
).
66.
C.
Bisgaard
, “
Velocity fields around spheres and bubbles investigated by laser-Doppler anemometry
,”
J. Non-Newtonian Fluid Mech.
12
(
3
),
283
302
(
1983
).
67.
A.
Emamian
,
M.
Norouzi
, and
M.
Davoodi
, “
Droplets with circular stagnation lines: Combined effects of viscoelastic and inertial forces on drop shapes
,” arXiv:2106.02819 (
2016
).
68.
Y. J.
Liu
,
T. Y.
Liao
, and
D. D.
Joseph
, “
A two-dimensional cusp at the trailing edge of an air bubble rising in a viscoelastic liquid
,”
J. Fluid Mech.
304
,
321
342
(
1995
).
69.
E.
Soto
,
R.
Zenit
, and
O.
Manero
, “
Breakup of the tail of a bubble in a non-Newtonian fluid
,”
Phys. Fluids
20
(
9
),
091110
(
2008
).
70.
D.
Funfschilling
and
H. Z.
Li
, “
Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualization
,”
Chem. Eng. Sci.
56
(
3
),
1137
1141
(
2001
).
71.
W.
Wang
, “
Review of single bubble motion characteristics rising in viscoelastic liquids
,”
Int. J. Chem. Eng.
2021
,
1712432
.
72.
G.
Astarita
and
G.
Apuzzo
, “
Motion of gas bubbles in non-Newtonian liquids
,”
AIChE J.
11
(
5
),
815
820
(
1965
).
73.
P. H.
Calderbank
,
D. S. L.
Johnson
, and
J.
Loudon
, “
Mechanics and mass transfer of single bubbles in free rise through some Newtonian and non-Newtonian liquids
,”
Chem. Eng. Sci.
25
(
2
),
235
256
(
1970
).
74.
D.
De Kee
and
R. P.
Chhabra
, “
A photographic study of shapes of bubbles and coalescence in non-Newtonian polymer solutions
,”
Rheol. Acta
27
(
6
),
656
660
(
1988
).
75.
T.
Taylor
and
A.
Acrivos
, “
On the deformation and drag of a falling viscous drop at low Reynolds number
,”
J. Fluid Mech.
18
(
3
),
466
476
(
1964
).
76.
M.
Norouzi
,
A.
Emamian
, and
M.
Davoodi
, “
An analytical and experimental study on dynamics of a circulating Boger drop translating through Newtonian fluids at inertia regime
,”
J. Non-Newtonian Fluid Mech.
267
,
1
13
(
2019
).
77.
M. C.
Sostarecz
and
A.
Belmonte
, “
Motion and shape of a viscoelastic drop falling through a viscous fluid
,”
J. Fluid Mech.
497
,
235
252
(
2003
).
78.
B. Z.
Vamerzani
,
M.
Norouzi
, and
B.
Firoozabadi
, “
Theoretical and experimental study on the motion and shape of viscoelastic falling drops through Newtonian media
,”
Rheol. Acta
55
,
935
955
(
2016
).
79.
C.
Fan
,
Z.
Li
,
M.
Du
,
R.
Yu
, and
Z.
Yang
, “
Experimental study on different behaviors of spheres entering water and PEO solution
,”
Mar. Georesour. Geotechnol.
39
(
4
),
471
481
(
2021
).
You do not currently have access to this content.